Human Factors: Unknowns, Knowns and the Forgotten

Peter C. Burns

Standards Research & Development, Motor Vehicle Safety Transport Canada

2018 SIP-adus Workshop: Human Factors

Outline

- Examples of bad design
- Expert evaluations of assisted driving systems
- Human Factors (HF) body of knowledge
- Process requirements and safety assurance
- Canadian on-road testing guidelines
- Summary

Bad Human Factors Design Example 1

FRONT

....

REAR

W.

OFF

(5)

AUTO

Driver: I love this song! Turn up the volume.

20° 4 AM 690 12:27 S 22° out. 22° Press and hold icons to drag to menu bar below. ۲ \bigcirc Controls Driver Heat App Manager Climate 2 Hybrid Electric Driver Heated Wheel KeySense Vent 3 (ŝ Nav Phone Psgr Heat Phone Radio \bigcirc Ś Controls Media Û Apps Nav Climate

REALER BOREN OR NOL

3

Bad Human Factors Design Example 2

Relevance to Automated Vehicles

- Bad HMI is already pervasive
- Opportunities for inadequate design will increase with:
 - Novel and complex automated driving systems
 - Vague operational design domains (ODD)
 - Miscalibrated trust (disposition, situation and experience)
 - Assisted/ shared/ conditional automation with transition HMI (requests to intervene and fallback behavior)
 - Driver state issues (inattention, fatigue, sleep inertia, confusion and overload) and their detection
 - Signaling and interaction with passengers and other road users.

5

Expert Audit – Methodology

- 2 human factors experts evaluated the safety and usability of assisted driving functions on 3 different vehicles
- Drove a set test route in traffic with assisted driving functions
- One expert was familiar with the HMI and operation of the vehicle being tested, while the other was not
- They used a detailed checklist that focused on:
 - **Detection** (e.g., find controls, monitor displays)
 - Judgement (e.g., choose setting, determine system status),
 - Operation (e.g., press button, grab steering wheel to override system)
 Green & R

Expert Human Factors Audit – Results

- Numerous design issues created challenges for the drivers:
- Finding the controls and displays and identifying functions
- Less accessible / hidden locations for controls
- Easily confused with other controls

is a

Wrong control design for required action

Expert Audit – Results continued

- Confusing, unpredictable and distracting
- Unknown functionality
- Unknown operational design domain (ODD)
- Current system status, or change in status, never clear
- Takeover requests are only implied
- Requires drivers to look away from the road

Established Body of Human Factors Knowledge

- Human-Machine Interface (HMI) design
 - Displays optimal fonts, symbols, colour contrasts, coding, grouping...
 - Controls shape, operation, stereotypes and conventions...
- Labelling and warnings design
- Human-systems integration/ User-centred design
- Physical ergonomics (anthropometry and biomechanics, forces, comfort, reach envelops, eye- ellipse, H-point etc)...
- Human error, workload, situation awareness, psychophysiology and operator state...
- Research tools and methods

Recent Knowledge - Examples

- Human Factors Design Guidance for Level 2 and Level 3
 Automated Driving Concepts https://www.nhtsa.gov/document/human-factors-design-guidance-level-2-and-level-3-automated-driving-concepts
- Guidelines and verification methods for automated vehicle HMI (Transportation Research Part F, Naujoks et al., 2018)
- The challenge of advanced driver assistance systems assessment (Transportation Research Record, Biondi et al., 2018)
- 2017 & 2018 Forum on the Impact of Vehicle technologies and Automation on Users (AAA Foundation for Traffic Safety)
 https://aaafoundation.org/2017-forum-impact-vehicle-technologies-automation-users-summary-report/

Human Factors Design Guidance for Level 2 And Level 3 Automated Driving Concepts

Human Factors (HF) Process Requirements

HF knowledge exists but it must be a priority and applied more effectively

- Established procedures to define intended users, user needs, use cases and interfaces
- Identify use-related hazards and categorize critical tasks and develop and implement risk mitigation or control measures
- Consult relevant guidelines and standards, prototype and verify design with user testing (real users) ... repeat
- Document the whole process with sign-off from human factors experts

User experience (UX) design does not address safety, performance and usability

Safety Assessment for ADS in Canada

- A tool developed by Transport Canada to assist ADS developers in reviewing the safety of SAE level 3 to 5 automated vehicles they manufacture, import, operate and/or intend to sell in Canada
- Aligned with similar US policy measures to provide guidance while ADS technology is evolving and it is not yet appropriate to consider conventional regulatory approaches
- ADS Vehicles will still be required to comply with existing Canadian Motor Vehicle Safety Standards or obtain regulatory exemptions as necessary
- ADS equipped vehicles will also be subject to defect and compliance provisions of the Canadian Motor Vehicle Safety Act

Testing Highly Automated Vehicles in Canada: Guidelines for Trial Organizations

Include several statements relevant to human factors:

- Apply to temporary trials of ADS and set minimum safety practices organizations are expected to follow in Canada.
- Recommendations:
 - Drivers be adequately trained and remain attentive during the trial operations, incorporating measures to manage fatigue and mitigate driver distraction
 - ADS is equipped to facilitate safe human-machine interactions; including clear and effective communication with passengers and other road-users
 - Safe transitions between automated and non-automated modes
 - Safely managing interactions with other road users, including vulnerable road users such as pedestrians and cyclists and protection of onboard users.

Published in June 2018

http://www.tc.gc.ca/en/services/road/safety-standards-vehicles-tires-child-car-seats/testing-highly-automated-vehicles-canada.html

Canadian Jurisdictional Guidelines for the Safe Testing and Deployment of Highly Automated Vehicles

CANADIAN JURISDICTIONAL GUIDELINES FOR THE SAFE TESTING AND DEPLOYMENT OF HIGHLY AUTOMATED VEHICLES

(AUTOMATED DRIVING SYSTEM LEVELS 3-4-5

- Recommendations on policy, legislative and regulatory issues for provinces and territories to consider to facilitate ADS testing and deployment.
- Key topics covered include:
 - Guidance on administration of testing and deployment
 - Vehicle credentialing
 - Driver licensing
 - Law enforcement and crash/incident reporting

Published in October 2018

https://ccmta.ca/en/ccmta-research-canadian-jurisdictional-guidelines-for-the-safe-testing-and-deployment-of-highly-automated-vehicles-now-available

Summary

- Bad design remains an issue and risks will likely increase with more complex automated driving systems
- A substantial body of knowledge already exists to address many of the human factors design needs for automated driving systems but a process is needed to ensure it is applied more effectively
- On-road testing with real users is an essential part of development
- International harmonized research efforts are needed to address the numerous research questions for automated vehicles.