

Development and substantiation of simulation technology for estimation of detailed traffic accident reduction effects

Research aim

To develop a multi-agent traffic simulation software applicable to predict the potential safety improvements of different automated vehicle technologies.

Simulation to predict the impact of Automated Driving systems

■Execution of simulation

■Simulation conditions

Simulation Condition	1	2	3	4	5
Manual driving	100	50	25	25	
AEB (SAE Lv.1~2)		50	25		
AEB+LDW (SAE Lv.1~2)			50	50	25
Automated Driving (SAE Lv.3~5)				25	75

Occurrence spot by simulation condition

Relative accident rates and accident proportions by Automation penetration level

✓ Novel multi-agent traffic simulation software developed and applied to a 6 x 3 km area.

[%]

- ✓ Over a simulated period of time including more than 500 agents, the software can simulate at least five types of accidents.
- ✓ Different automated driving technology penetration scenarios can be set to estimate the potential impact of different technologies on safety.

