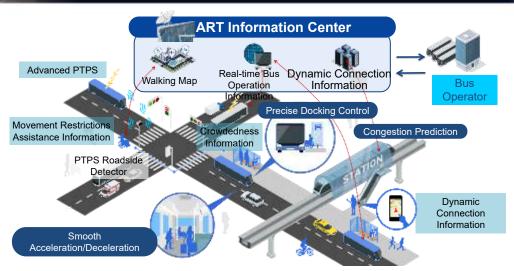

Development of precise docking system contributing to Next Generation Transportation in SIP

Sadahiro Kawahara JTEKT Corporation

JTEKT

November 14th,2018



- 1. Next generation transport in SIP
- 2. Precise docking control technology
- 3. Sensor fusion technology
- 4. Cooperative docking control with driver
- 5. Field operational test

Next generation transport in SIP

Next Generation Transport in SIP

SSIP

Realize consistent accessibility for all people including elderly and handicapped person

Next Generation Transport in SIP

SSIP

Precise docking control technology

Development of sensing and control technology for ART docking system

dead band or delay

mechanical issue

caused by

- >Sensor fusion technology: Vehicle position, surroundings (pedestrian, bicycle and others)
- >Control technology: Integrated control of steering and braking

Target Development item Technology 1 Smooth embarkment Sensor fusion technology compatible with current road marking

 Poburtness in various anvirous. 2 Robust control in at station various environments >Robustness in various environments >Small infrastructure investment Front camera >Fast image processing Side camera 2) Improvement of steering system control performance >Advanced steering Without control control reducing

and steering control

3 Smooth braking

4 Cooperative docking

Reducing jerk at braking and cornering >Sophisticated and integrated steering and braking control

Tire

Tire angle

sensor

4) Harmonizing driver and automated operation >Precise estimation of driver intention from steering torque or deviation of steering torque

ITS Asia-Pasific forum Fukuoka

Development at The University of Tokyo

The University of Tokyo

ITS R&R Experiment Fields at Kashiwa

Demonstration at October 16th, 26th, 27th, 2018 Over 500 Participants

Autonomous driving and precise docking at closed course with RTK-GPS sensing

Test mule for precise docking control

Specification

- OBlue Ribbon City (Hybrid)/Hino motors, Ltd
- ○Number of seats: 20
- OAttachments for wheel chair: 2
- ○Length:10.5m×Width:2.5m×Height:3.3m
- ○Number of doors: 2
- OHeight of floor: About 340mm (Non step)

Additional equipment

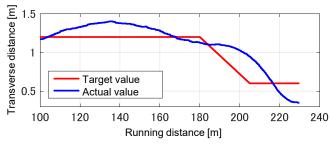
- OAutonomous steering actuator
- **OAutonomous brake actuator**
- **○GNSS、QZSS** receiver
- **OFront and side camera**
- **○Lidar**

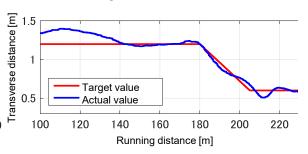
Appearance

Seat layout

Optimization of control gain

Control gain k2 (term of decreasing transverse deviation)


k2 value was Constant → Switch k2 values (straight / docking)


⇒ Optimum vehicle behavior in each situation

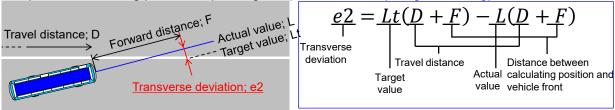
Constant

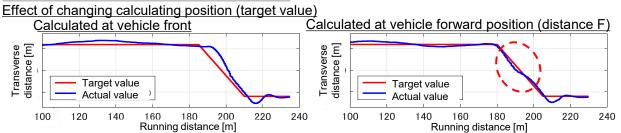
Optimized gain in straight situation.

Switching (straight / docking)
Optimized gain in each situation.

Tracking performance is considerably improved.

Optimization of calculating transverse deviation

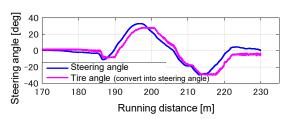


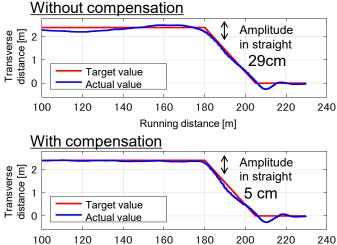

Transverse deviation

①Change calculating position (vehicle forward) for <u>target value</u>.

(Last year, calculating position for <u>actual value</u> was already changed.)

2) Optimize calculating position depending on speed, situation (straight/ docking).





Steering control which compensate the tire angle response to the steering angle behavior

Dead zone between steering angle and tire angle is about 11degrees.

⇒ Correct target steering angle.

Running distance [m]

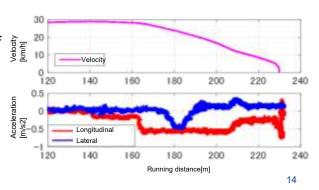
Stop to the bus stop with high accuracy

Braking control method

 Calculate target acceleration using assumed stop point.

$$a = \frac{v^2}{2(St - S)}$$

lepha: target acceleration, v: velocity


S:runnig distance, St:assumed stoppingpoint

• Set different values of assumed stop point in the first half and the latter half of lateral moving

Result

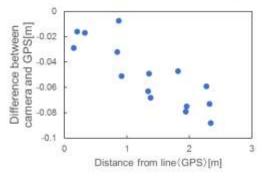
Longitudinal deviation: ±0.2m XAllowable range: ±0.5m.

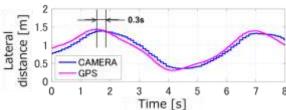
Precise docking control (Driver's view)

Sensor fusion technology

Sensor fusion technology

Comparison of RTK-GPS / Front camera

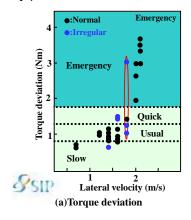

Fundamental study for multiple sensing method selection or cooperation is progressed.

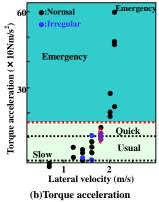

Output value of lateral position is different between RTK-GPS and front camera.

It is related to the actual distance.

The value from camera is delayed to the value from RTK-GPS (0.3sec)

When the sensor switches, it should be taken into account for sensor characteristics.




Cooperative docking control with driver

Cooperative docking control with driver

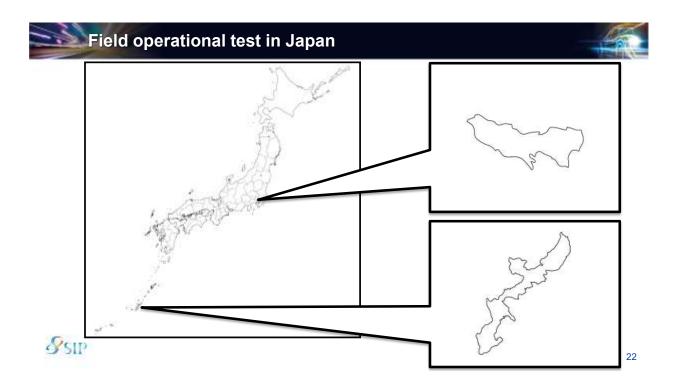
Sharing control method between vehicle system and driver is developed using Steer-by-wire system without mechanical linkage

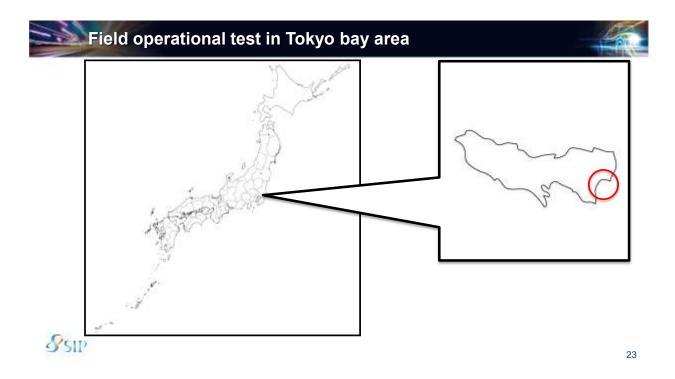
In the case of avoidance at emergency on level 3, additional function to autonomous avoidance will be possible by precise estimation method of driver's intention from steering internal parameter.

Example; Estimation of driver intention from the deviation of steering torque or torque acceleration

JSAE journal Vol.31,No1,January 2000. 20004035

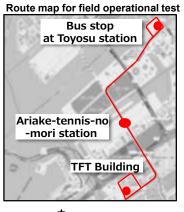
Intervention by driver (Avoidance at emergency)





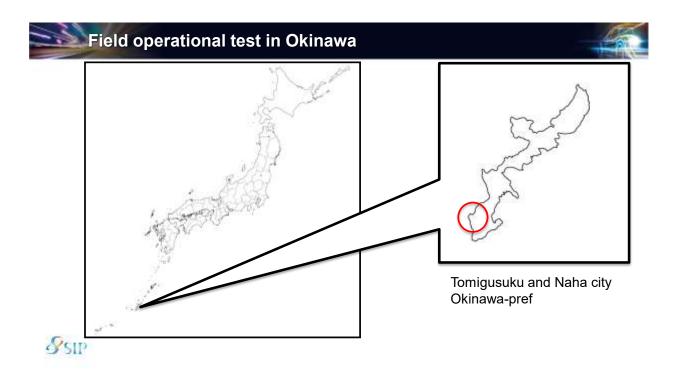
SSIP

Field operational test



Field operational test in Tokyo bay area

Field operational test; 20th November – 21th December

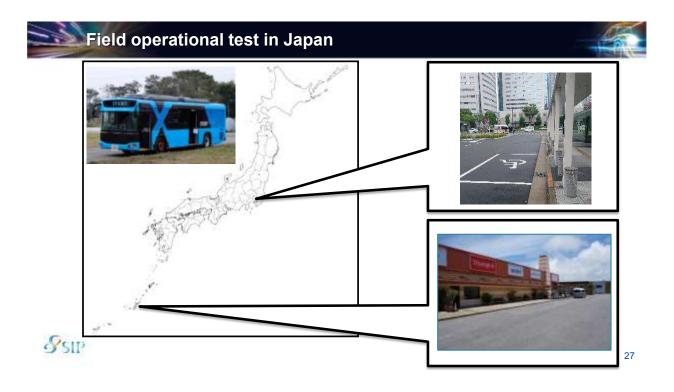

Demonstration of ART; 6-7th February

SSIP

We are here.

Field operational test in Okinawa

Schedule (Temporary)


Field operational test; 13th February – 8th March

Pre-test; 31th October- 15th November 6th January – 24th January

