Development of precise docking system contributing to Next Generation Transportation in SIP

Sadahiro Kawahara
JTEKT Corporation

November 14th, 2018
1. Next generation transport in SIP
2. Precise docking control technology
3. Sensor fusion technology
4. Cooperative docking control with driver
5. Field operational test
Next generation transport in SIP
Realize consistent accessibility for all people including elderly and handicapped person
Next Generation Transport in SIP
Precise docking control technology
Development of sensing and control technology for ART docking system

-> Sensor fusion technology: Vehicle position, surroundings (pedestrian, bicycle and others)
-> Control technology: Integrated control of steering and braking

Target

1. Smooth embarkment at station
2. Robust control in various environments
3. Smooth braking and steering control
4. Cooperative docking control with driver

Development item

1. Sensor fusion technology compatible with current road marking
 - Robustness in various environments
 - Small infrastructure investment
 - Fast image processing

2. Improvement of steering system control performance
 - Advanced steering control reducing dead band or delay caused by mechanical issue

3. Reducing jerk at braking and cornering
 - Sophisticated and integrated steering and braking control

4. Harmonizing driver and automated operation
 - Precise estimation of driver intention from steering torque or deviation of steering torque
ITS Asia-Pasific forum Fukuoka

Technical visit
Training center of Nishitetsu bus
May 8-10th, 2018
About 120 Participants
Autonomous driving and precise docking at closed course with RTK-GPS sensing
ITS Asia-Pacific Forum Fukuoka
Development at The University of Tokyo

The University of Tokyo
ITS R&R Experiment Fields at Kashiwa
Demonstration at October 16th, 26th, 27th, 2018
Over 500 Participants
Autonomous driving and precise docking
at closed course with RTK-GPS sensing
Test mule for precise docking control

Specification
- Blue Ribbon City (Hybrid)/Hino motors, Ltd
- Number of seats: 20
- Attachments for wheel chair: 2
- Length: 10.5m × Width: 2.5m × Height: 3.3m
- Number of doors: 2
- Height of floor: About 340mm (Non step)

Additional equipment
- Autonomous steering actuator
- Autonomous brake actuator
- GNSS, QZSS receiver
- Front and side camera
- Lidar
Optimization of control gain

Control gain k_2 (term of decreasing transverse deviation)

k_2 value was Constant \rightarrow Switch k_2 values (straight / docking)

\Rightarrow Optimum vehicle behavior in each situation

Constant

Optimized gain in straight situation.

Switching (straight / docking)

Optimized gain in each situation.

Tracking performance is considerably improved.
Optimization of calculating transverse deviation

Transverse deviation

① Change calculating position (vehicle forward) for target value.
 (Last year, calculating position for actual value was already changed.)

② Optimize calculating position depending on speed, situation (straight/ docking).

\[e_2 = L_t(D + F) - L(D + F) \]

Effect of changing calculating position (target value)

Calculated at vehicle front

Calculated at vehicle forward position (distance F)
Steering control which compensate the tire angle response to the steering angle behavior

Dead zone between steering angle and tire angle is about 11 degrees.
⇒ Correct target steering angle.

Without compensation

Amplitude in straight 29 cm

With compensation

Amplitude in straight 5 cm
Stop to the bus stop with high accuracy

Braking control method
- Calculate target acceleration using assumed stop point.
 \[a = \frac{v^2}{2(S_t - S)} \]
 ※ \(a\) : target acceleration, \(v\) : velocity
 \(S\) : running distance, \(S_t\) : assumed stopping point
- Set different values of assumed stop point in the first half and the latter half of lateral moving

Result
- Longitudinal deviation: ±0.2m
 ※ Allowable range: ±0.5m.
Precise docking control (Driver’s view)
Sensor fusion technology
Comparison of RTK-GPS/Front camera
Fundamental study for multiple sensing method selection or cooperation is progressed.

Output value of lateral position is different between RTK-GPS and front camera.

It is related to the actual distance.

The value from camera is delayed to the value from RTK-GPS (0.3sec)

When the sensor switches, it should be taken into account for sensor characteristics.
Cooperative docking control with driver
Cooperative docking control with driver

Sharing control method between vehicle system and driver is developed using Steer-by-wire system without mechanical linkage.

In the case of avoidance at emergency on level 3, additional function to autonomous avoidance will be possible by precise estimation method of driver’s intention from steering internal parameter.

Example;
Estimation of driver intention from the deviation of steering torque or torque acceleration.

JSAE journal
Vol.31, No1, January 2000.
20004035
Intervention by driver (Avoidance at emergency)
Field operational test
Field operational test in Japan
Field operational test in Tokyo bay area
Field operational test in Tokyo bay area

Field operational test; 20th November – 21st December
Demonstration of ART; 6-7th February

Route map for field operational test (Temporary)

- Bus stop at Toyosu station
- Ariake-tennis-no-mori station
- TFT Building

★ We are here.
Field operational test in Okinawa

Tomigusuku and Naha city
Okinawa-pref
Field operational test in Okinawa

Schedule (Temporary)
Field operational test ; 13th February – 8th March
Pre-test ; 31th October- 15th November
6th January – 24th January
Field operational test in Japan
Thank you