Communication and Interaction between Automated Vehicles and other Road Users

SIP-adus Workshop HF Plenary session

Tokyo, Nov 2018

Prof. Klaus Bengler
Technical University Munich
Faculty of Mechanical Engineering
Chair of Ergonomics

with contributions of J.Schmidtler, J.Reinhart,
C.Gold, D.Damböck, M.Kienle, D.Bortot
We are able to do this – Why change
Explicit Communication
Implicit Communication
Legible Movements of automated mobile Systems

Communication of Intentions, Actions and system states

• Explicitly via displays etc.
• Implicitly via movements

Legibility – “Robot behavior is legible if:
• (factor 1) a human observer or interactor is able to understand its intentions, and
• (factor 2) the behavior met the expectations of the human observer or interactor.”
(Lichtenthäler & Kirsch, 2016)

Reading:
Current OEM Concepts

- Focused on explicit, external messages
- Based on and embedded into a running system
Publication Fuest et al. (2017):
Taxonomy of Relevant Traffic Situations

• classifies the interaction between an automated vehicle (AV) and a human road user (HRU)
• provides an overview over relevant attributes and related value facets that may influence
 the communication between the AV and the HRU
• can be used to choose attributes and value facets which are relevant for a specific
 research question
“How quickly can the AV’s intention regarding the right of way be expressed by using a targeted design of the trajectory?”
Lab Study Dietrich et al.: Pedestrian Simulator

Platform using Unity and any supported HMD and Motion Tracker

Simple generation of different traffic scenarios

Full control of traffic related variables

- How to implement a methodology to investigate interaction and cooperation between traffic participants? (non-assisted cars, assisted cars, VRUs)
- Definition of suitable analysis tools and metrics to quantify interaction and cooperation
Research on Interactions between Vehicles and VRUs
Research on Interactions between Vehicles and VRUs

Field Data

Pedestrian Simulator TU München

Testbed Aachen
Observation of Urban Traffic
Methodology

Video:

• Birds eye view perspective of locations chosen to represent the use-cases

• Algorithmic analysis of the videos to derive positions and velocities of various traffic participants
Methodology

LiDAR:
- Stationary LiDAR giving additional information on traffic participants and increasing tracking range
- Collected data is synchronized in time enabling a holistic overview of observed interactions

- WebCam
- GNSS Receiver
- Ibeo Lux Laser Scanner
- SSD Drive
- Laptop Power Bank
- Raspberry Pi
- WiFi Access Point
Methodology

Manual Observation:

- Observers protocoling individual observed interactions from the ground
- HTML based app for tablets observing pedestrian and driver behaviour, including head rotation, eye contact, etc.
- Questionnaires
Overall Findings

- Human road users seem to avoid active communication with others by adapting their movement behavior early.
- Only in ambiguous situations (e.g. deadlocks) communication is used to let the other traffic participant go first, mostly using gestures.
- In the rare case that pedestrians waved a driver through, the “Thank You” hand gesture always followed by the driver.
Results

• Most notably, interaction occurs only if the velocity of the vehicle in right of way is below a certain threshold.

• At higher velocities interactions are highly unlikely.

• AVs might need to adapt their behavior accordingly.

• Different driving strategies implicitly give hints to other road users about the driver’s intention.
Conclusions

- Current taxonomies of AD do not take into account cooperation between traffic participants
- A systematic of methodologies is needed
- Implicit communication plays a dominant role for interaction between traffic participants
- There is a dilemma of consistency of eHMI of the near future and the existing knowledge for their design and usage
- No clear indication can be given for explicit communication
- Explicit communication should not be the remedy for insufficient realization of AV functionality
German Activities

• UR:BAN (Driver Assistance in urban areas) (2012 - 2016)
• BaSt „Kommunikation zwischen Verkehrsteilnehmern: Einfluss zunehmender Fahrzeugautomatisierung“
• IMAGINE (Cooperative Manouvers on Motorways) (2016 - 2020)
• Pedsival – Validation of Pedestrian Simulators (IFSSTAR – TUM) (2017 -)

• inter:ACT EU-Project (Designing cooperative interaction of automated vehicles with other traffic participants in mixed traffic environments) (2017 - 2021)
• DFG SPP (2016 -). Interaction between AV and VRU (Prof. Krems)
• Konvoy Project
• KOLA – Kooperativer Laserscheinwerfer (11/2016 - 10/2019)
• Unicaragil – Autonomous Driving
• @city – Urban Automated Driving (2018 -)
Wizard of Oz

Second Part - Method

Dependent Variables

Intention Recognition Time (IRT):
- measures how much **time** is needed by a pedestrian to **understand the intention** of a vehicle
 (Dragan & Srinivasa, 2013; Gielniak & Thomaz, 2011)

Questionnaire
- **vehicle's assumed intention** (“Let the HRU go first” or “Go first”)
- **certainty** about the vehicle’s intention (very uncertain to very certain)
- **vehicle’s driving behavior** (very poor to very good)
- **perceived criticality** of the situation (very critical to very uncritical)
Wizard of Oz

Discussion

Intention

- participants almost always understood the intention of the vehicle

Driving Profile

- pedestrians preferred if a vehicle yielded its right of way

Seat Cover

- pedestrians did not perceive the difference between a driver and an empty driver seat

Intentions are not only transmitted through the driver, but also through the driving behaviour of the vehicle.
References