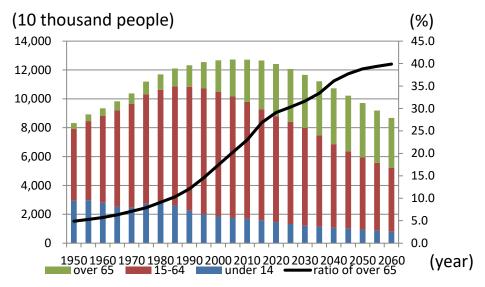
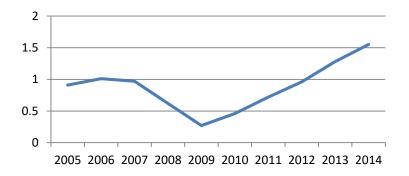



# METI's Automated driving Demo


# **Table of contents**

- 1.Background
- 2.Roadmap
- 3. Demonstration projects
  - 1 Mobility service in rural area
  - 2 Providing information for operators
  - **3 Truck Platoon on expressway**

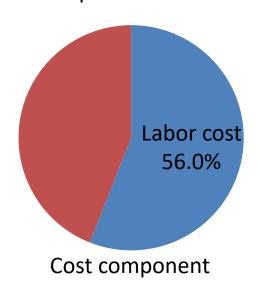

## 1. Driving force for automated driving in Japan

- Declining population → Shortage of drivers for public transport and logistics
- Aging society → Safety and free movement for Aged people (esp. rural areas)
   ⇒expected and accepted as one of the solutions to these social problems

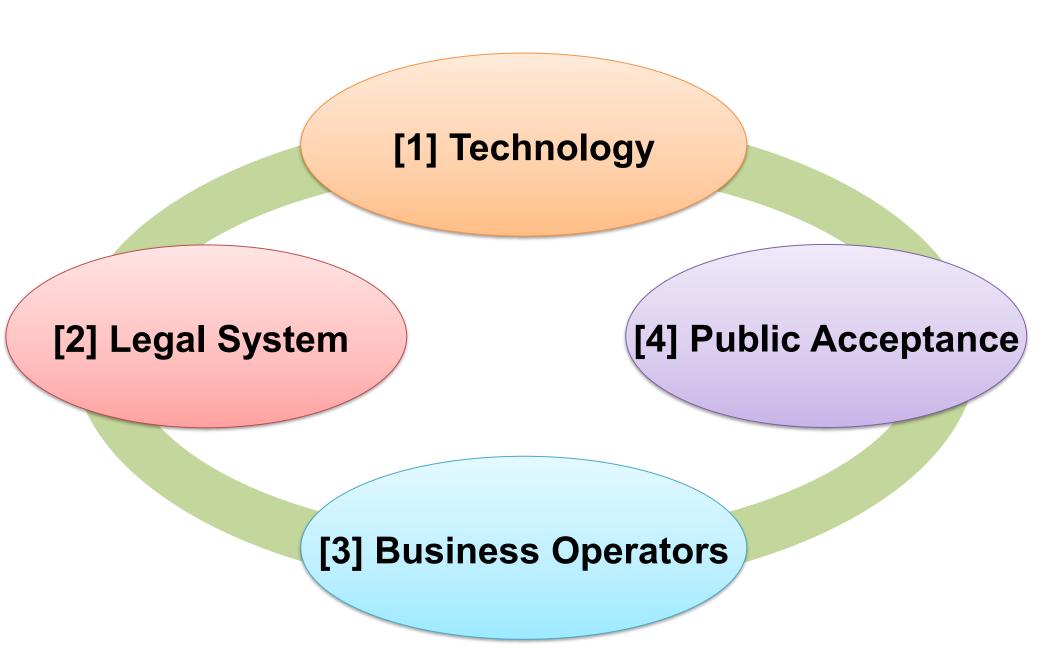
#### Trend of population in Japan



### Job offering ratio for truck driver

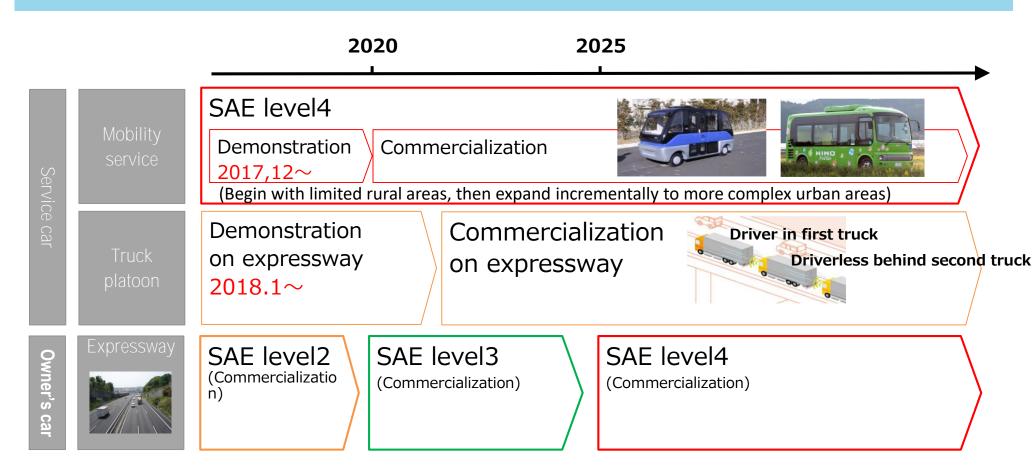



#### Business situation of bus operators (2014)


|        | In city | In rural |
|--------|---------|----------|
| Profit | 48      | 18       |
| Loss   | 26      | 152      |

(The number of bus operator)

→In rural area, there are few bus user, 70% of bus operators have deficit.




## Four initiatives for realizing automated driving



## 2. Roadmap on automated driving in Japan

 GOJ has decided (& regularly revises every year) a roadmap with different strategies for service car and owner's car.



Service car: providers can control driving area/situation/way (under certain rules) Owner's car: drivers have the discretion on driving area/situation/way

## 3-1. Last mile mobility Test by METI



## Last-mile AD demonstration tests (for business operators)

- Past demonstration tests until last year were <u>centered on technical evaluation of AD</u>
   <u>vehicle systems.</u>
- But from this year, <u>demonstration tests will be aimed mainly at AD</u>
   <u>commercialization possibilities</u> for business operators.
- Principal factors for <u>determining AD business feasibility</u>:
  - <u>Profitability model</u> (e.g. profitability in each route or in the total service area as a whole)
  - <u>Cost cuts in vehicles, roadside equipment, etc.</u> thru technological advancement and mass production
  - Income from passengers and other beneficiaries
  - Prospective <u>public subsidies</u>



Conduct a <u>longer-term demonstration test with an aspiring AD</u> <u>operator and local administration in a real-business setup</u>; determine the necessary numbers of passengers and AD cruises; then, produce a <u>business model</u> for AD mobility service.

# Demonstration tests in Eiheiji-cho, Fukui Pref.

# Depopulated area model: revitalizing an aging community

- Provide shuttle mobility between railway station and residential/tourist area utilizing temple approach road
- Realize safe mobility in night and snow
- Serve both local commuters/residents and tourists
- Expand tourism by promoting the walking/cycling paths, existing roadside stores, etc.

#### [Current]

The township has refurbished an old railway site into a new ground for AD demonstration tests along walking/cycling paths. (A majority of tourists to Eiheiji Temple expected to use existing transport, such as sightseeing buses and private cars, directly from the prefectural capital city of Fukui.)

#### [Aspired business model]

Passengers: Tourists and residents to be served by AD mobility

Fees: To be paid by passengers; for example, JPY 500 per tourist and

JPY 100 per resident

#### [Tests in FY 2018]

- Undertake a sustained one-month demonstration test
- Experiment a simultaneous monitoring of several AD cars in a low-traffic area
- Upgrade the technologies for crossing high-traffic national roads and blind intersections and for properly responding to traffic signals
- Determine the predictable number of passengers and the amount of necessary subsidy from township (not exceeding the amount granted to the existing route bus operator)
- Possible use of AD cars for other applications (e.g. for carriage of both passengers and goods, snow removing work, patrolling)

#### [Stakeholders]

Fukui Pref., Eiheiji-cho township, local NPO for community development (including a bussing company)



Cruising route (2km public roads for pedestrians and cyclists; already approved for AD vehicle cruising)



Remote monitoring



Testing the AD running performance on snowplow tracks

\* Driverless AD cars are monitored by a person(s) in a remote control center.

# Demonstration tests in Chatan-cho, Okinawa Pref.

#### Tourist site model

- Cruise around tourist facilities, hotels, beach along non-public roads
- Revitalize the town by directing more visitors to roadside stores, etc.
- Provide safe, reliable mobility to the disabled

### [Current]

Hotels providing free mobility service to their guests connecting the beach (service costs borne by the hotels)

#### [Aspired business model]

**Passengers:** Hotel guests + Other tourists + town residents (Promotion of tourist/commercial facilities existing nearby; a new hotel under construction)

**Fees:** Considering a free-of-charge cruising model (costs borne by hotels and other existing commercial facilities)

#### [Tests in FY 2018]

- Execute a sustained one-month demonstration test
- Determine necessary technical improvements to ensure the safety of general pedestrians
- Investigate the desirable number of passengers for hotels and other businesses to bear the AD cruising costs
- Determine the necessary technical levels of vehicles and infrastructure acceptable to AD business operators, taking account of the large seasonal variations in tourist turnout

### [Stakeholders]

Chatan-cho township, UDEC (consultant firm), tourist hotels, store operators



Cruising route (2km non-public road along beach)



Test vehicles (Smart E Cart)



Central displays for remote monitoring

\* Driverless AD cars are monitored by a person(s) in a remote control center.

## 3-2. Providing information for operators

# Societal implementation cooperation meeting for lastmile automated driving



Ministry of Economy, Trade and Industry

Ministry of Land, Infrastructure, Transport and Tourism

- Provide information on government verification tests
- Ascertain needs of private sector and municipalities



Municipalities

8 prefectures

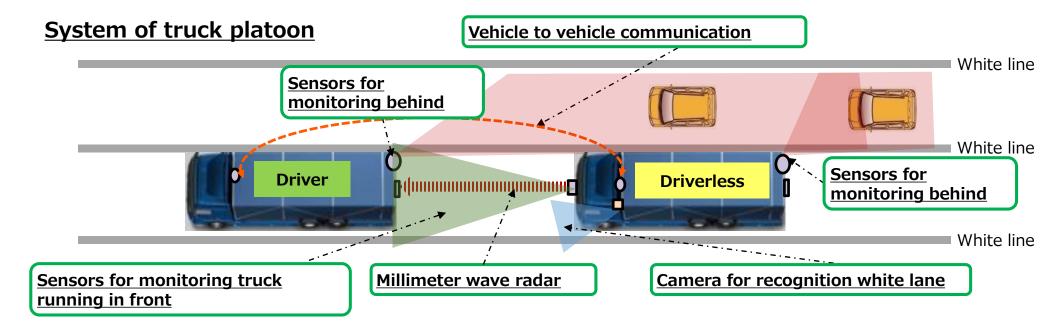
17 cities and towns



Companies/ organizations

46 organizations\*

- \*46 organizations
- •Component •IT
- Taxi
- •Bus
- Railway
- Insurance
- Developers
- Trading, etc.


### **Promoting information exchange**

- Introduce initiatives and share tasks
- Collect reference examples and know-how

- Introduce initiatives and share tasks
- Collect reference examples and know-how

## 3-3. Truck Platoon on expressway

- Three or more truck platoon, with no drivers on the second and subsequent tracks. We started demonstration on expressway from 2018.
- In the first phase, all truck have drivers.



### Issues on truck platoon

- Legal issue (Whether it is possible to regard truck platoon as tractor or it is possible to regard truck platoon as one truck that the first truck driver control)
- Secure places where truck platoon is formed and where drivers rest.

## Schedule for commercialization (Truck platoon)



# Demonstration experiment on truck platooning - Plans for experiments in FY 2018 –

## ○ Platooning with drivers in every truck (Nov. 2018~)

- As in last year, continue the CACC-based multi-brand truck platooning with <u>varied</u> conditions (e.g. different loading conditions, travel distances, road bending/slope conditions)
- Initiate a multi-brand truck platooning test based on both <u>CACC</u> and <u>LKA</u> technologies

## O Platooning with a driver in the front truck only (Jan. 2019~)

• Scheduled to initiate a <u>one-driver platooning on a public expressway</u>, applying an intertruck distance shorter than that of CACC-based platooning with drivers in every trucks.

\*CACC: Cooperative Adaptive Cruise Control, LKA: Line Keep Assist