Japanese-German Research Cooperation on Connected and Automated Driving

CAD Japan Germany

Human Factors

Prof. Klaus Bengler, Technical University Munich

Prof. Martin Baumann, Ulm University

Prof. Josef Krems, Technische Universität Chemnitz

Prof. Tibor Petzoldt, Dr. Jens Schade, Technische Universität Dresden

Dr. Caroline Schiessl, Anna Schieben, DLR
Challenges of AD in Urban Scenarios

Complex environment
• Short reaction times, high information density
• Heterogeneous dynamic scenarios
• Complex trajectories

Interaction with other traffic participants
• Intention and behavior of TPs
• Prognosis and negotiation
• Mixed traffic scenarios

Interaction between driver and AV
• User oriented transitions
• Changing roles of drivers

cf. www.atcity-online.de
- **AUTOelfe**
 - Private „Butler / Nanny“
 - Carrying out private trips to school, sports ...
 - Private, individual ...

- **AUTOtaxi**
 - Taxi-service
 - Order, open, interact with CE device
 - Cooperative and agile ...

- **AUTOshuttle**
 - Supplementing the public transport system
 - 6 – 8 persons
 - Moves and behaves like a rail vehicle

- **AUTOliefer**
 - Pick up and delivery service
 - Automated handover
 - Dense storage system

Woopen et al. 2018)
2. The Mechatronic Architecture
Facing a complex research situation with simultaneous technical development and introduction
CAD Japan Germany - Human Factors

<table>
<thead>
<tr>
<th>WP</th>
<th>Research item</th>
<th>Institutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>External communication between low-speed & fully automated vehicles and surrounding road users</td>
<td>TU Munich
TU Chemnitz
TU Dresden
Ulm University
DLR</td>
</tr>
<tr>
<td>2</td>
<td>Education and training</td>
<td>TU Dresden
TU Munich</td>
</tr>
<tr>
<td>3</td>
<td>Drivers’ interaction with the systems in local urban traffic</td>
<td>TU Munich
Ulm University</td>
</tr>
</tbody>
</table>
Participating

- Technical University of Munich
- Ulm University
- Technische Universität Dresden
- Technische Universität Chemnitz
- DLR

(GEFÖRDERT VOM Bundesministerium für Bildung und Forschung)
WP 1 - External communication

- Legibility of trajectories and AV motion behavior (TUM)
- Interaction with cyclists and their motion behavior (TUC)
- External HMI for surrounding road users (DLR, TUD)
- General model for communication and cooperation in the urban area (UU)

Synchronized intercultural experiments
Work Package 1 – Communication and Interaction (TUC)

- Re-analyzing existing (naturalistic cycling) data from former projects

- Videosimulation (LabView):
 - full experimental control of instructions,
 - including augmented videos
 - presentation via PC or beamer (including a static bicycle)

- Focus group discussions
Work Package 1 – Communication and Interaction (TUM)

Methods

- Multi-user simulation environment (vehicles, pedestrians, cyclists)
- Traffic observations
Work Package 1 – Communication and Interaction (UU)

Focus on communication and interaction between automated vehicles and other motorized road users

• Cooperative behavioral scripts and strategies
• Information needs and communication of intentions and action plans

Figure 1. The subject vehicle with the human driver (V1) follows a slowly driven automated vehicle (A2) following another vehicle with the human driver (V2), while another automated vehicle (A1) approaches faster on the left lane (TTC: Time to Collision; Ddis: distance gap; Vdiff: closing speed).
Work Package 1 – Communication and Interaction (German Aerospace Center, DLR)

Methods:

- Analysis of real traffic data → AIM Research Intersection
- Empirical Study in the multi-driver simulator MoSAIC
WP 2 - Education and training

- Education and training systems/concepts (TUD)
- Mental models of end users and potential foreseeable misuse (TUM)

Methods
- Status quo analysis
- Interviews
- Online questionnaires
Work Package 2 – Education and training (TUM)

Application and **test** of developed methods

- Influence of training concepts on driver mental models of automated systems

Status quo, international comparison, proposals for formal and informal training
WP 3 - Drivers’ interaction with the systems in local urban traffic

• Cooperative HMI for L2 and L3 automation in urban areas (U Ulm)
• Minimum requirements for non driving related tasks and take over time for L2 automation in Japanese vs. German urban areas (TUM)

• Synchronized intercultural experiments
Work Package 3 – Drivers’ interaction with the systems in local urban traffic (TUM)

- Analyzing the **driver interaction** with the automated vehicle during **transition phases** including minimal risk maneuvers
Work Package 3 - Drivers’ interaction with the systems in local urban traffic (UU)

Cognitive processes underlying the dynamic allocation of tasks between human and automation:
Work Package 3 - Drivers’ interaction with the systems in local urban traffic (UU)

Methods:

• Driving simulator experiments
• Deployment of neurophysiological measurements
• Cognitive modelling of the driver state
Outlook on Japanese German Collaboration

• Networking and synchronization of research activities
• First synchronized experiments in 2020
• Joint workshops with industry experts
• Exchanging staff and students
• Networking of education and invited talks
• Dissemination of results - Coauthoring publications

Accelerate successful introduction of safe automated vehicle technology
Increase social acceptance of automated systems for broader international markets base
Cross-cultural comparisons