

Measurable Safety – A Metric Driven Approach for Safety Assessment And Rating of AVs

CDV – Coverage Driven verification

Gil Amid Foretellix Ltd

Key Messages

- AV/ADS Safety needs to be quantifiable usage of miles and disengagement is insufficient
- AV/ADS Safety can be measured and quantified
- Coverage Driven Verification is a proven method to measure and quantify maturity of complex h/w-s/w systems
- Coverage metrics can and should be used to quantify AV/ADS safety

© 2019 Foretellix

Safe?

- How do I 'Cover' 100s of Millions of Scenarios?
- How do I Find the Edge Cases?
- No Standards In Place
- No Rating system in place

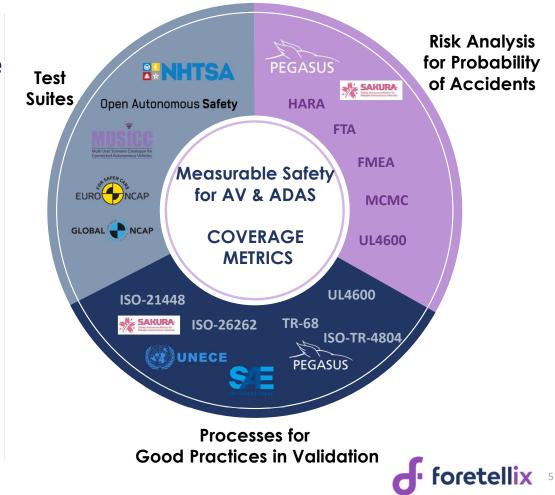
What to demand for certification? What can be tested ? What data can be used ? What is "safe enough" ? What is the required minimum ?

Foretellix's Mission

Measurable Safety of Autonomous Vehicles and ADAS

Quantity of Miles

Physically or Virtually Logging Miles and Associated Disengagements and/or Failure Rates



Successfully Exercising the Scenarios Critical for AV Safety and Extracting the Metrics to Prove It

Building the AV Safety Argument

- Verification & validation coverage metrics are needed for enabling the body of evidence required for building the AV's safety case
- Coverage Metrics measure what actually happens and provides scenario coverage aggregation analytics & metrics
- Coverage metrics supports all existing and emerging safety standards & processes

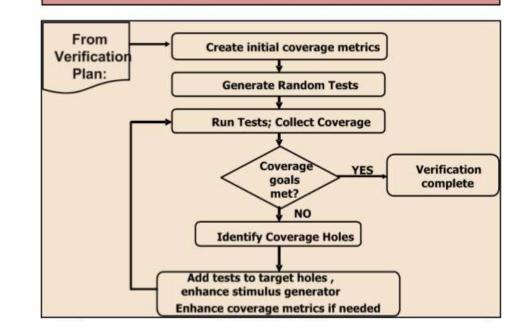
- How did the AV perform within a given ODD?
- KPI/Metrics specify the specific measurements to be analyzed, given specific test conditions /ODD. Usually – "simulation output"

Answering:

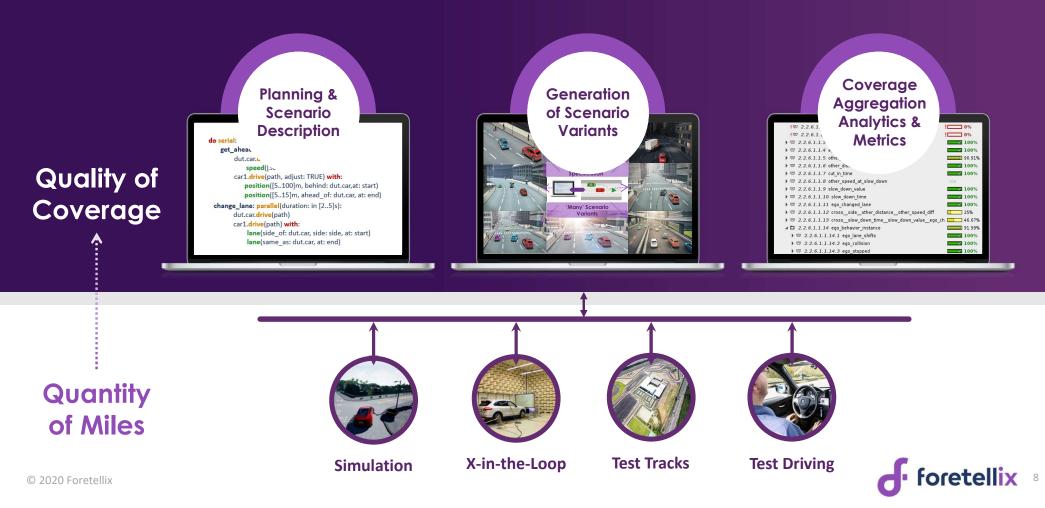
- In ODD X, How did the ego perform for all test variations in the context of "cut in" ? (aggregate of all specific measurement)
- What was TTC, when the AV was driving at 55kph, and the other player deceleration was -3 m/s²? Is it above my threshold ?

- What was actually tested, out of the possible space of testing values [per ODD]
- Coverage can be measured both on test input/settings ,as well on output/results of the tests. It can be measure on one ,two, or multiple dimensions

• Answering:

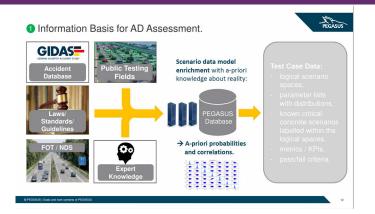

- For "cut in" scenario, on a road with 2 lanes and only green cars, what % of the possible AV speeds between 50KPH and 100KPH did I test ?
- What % of the TTC space between 0 and 3S was demonstrated during all tests ?

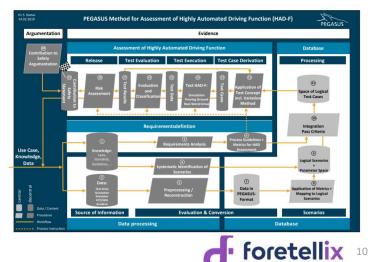
Coverage Driven Verification


- The main method to verify complex VLSI/SOC designs: Microprocessors, GPUs, Network and cellular processors
- Method evolved in the early 90's
 - Intel's Pentium[®] floating point bug –
 ~\$0.5B cost (1994)
- Main principles: Loop: Plan, test, measure and analyze metrics
- Goal is to maximize coverage
- Using Constrained Random Scenario/Test generation
 © 2019 Foretellix - Confidential

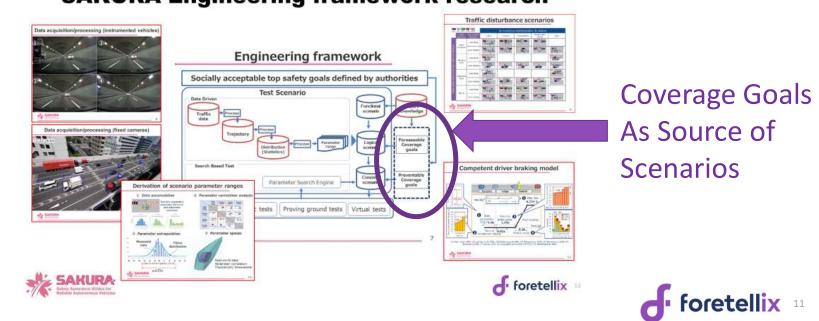
Coverage Driven Verification

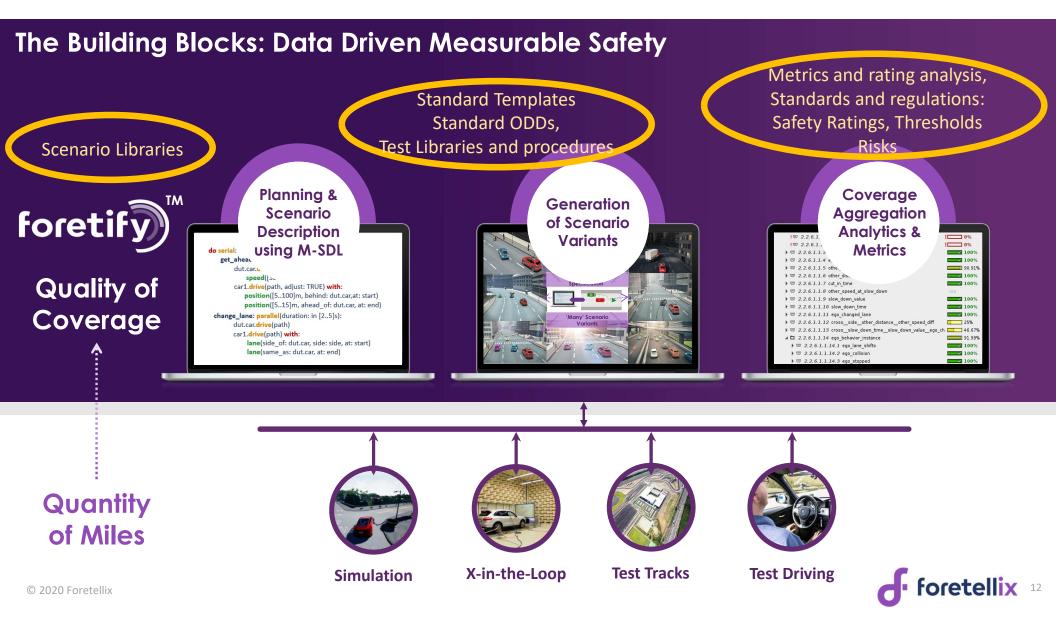
Putting it all together: Data Driven Measurable Safety

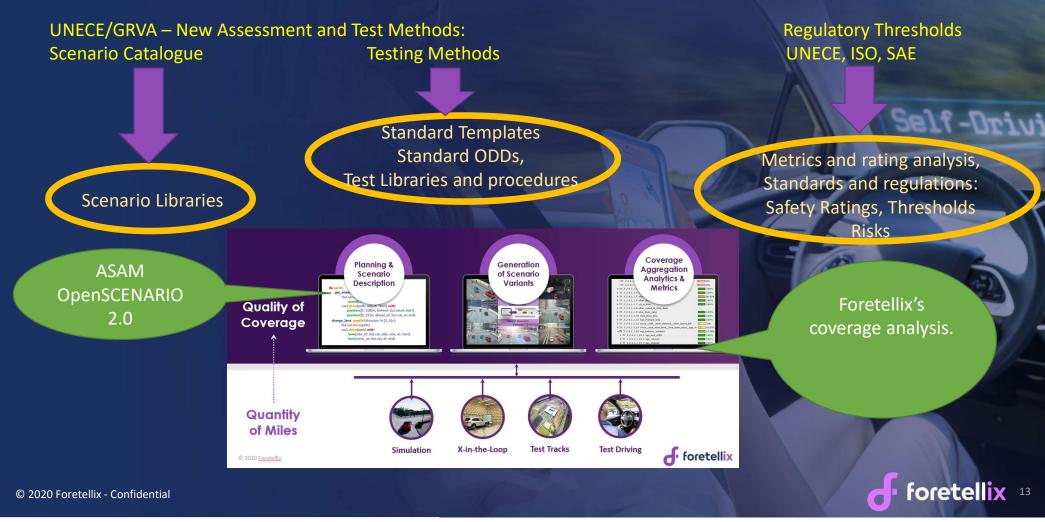



Coverage Driven Verification Methodology for Measurable Safety

CDV and PEGASUS method


- PEGAUS Method analyses extracted data and existing [historical] knowledge in order to create and define the required simulations space for AD assessment
- CDV complements and enhances the Pegasus approach:
 - CDV Adds the COVERAGE REQUIREMENTS as a data source for the decision process
 - Introduces constrained-random simulation generation to cover huge simulation and variation space
 - Provides methods to create unforeseeable scenarios




CDV and SAKURA methods

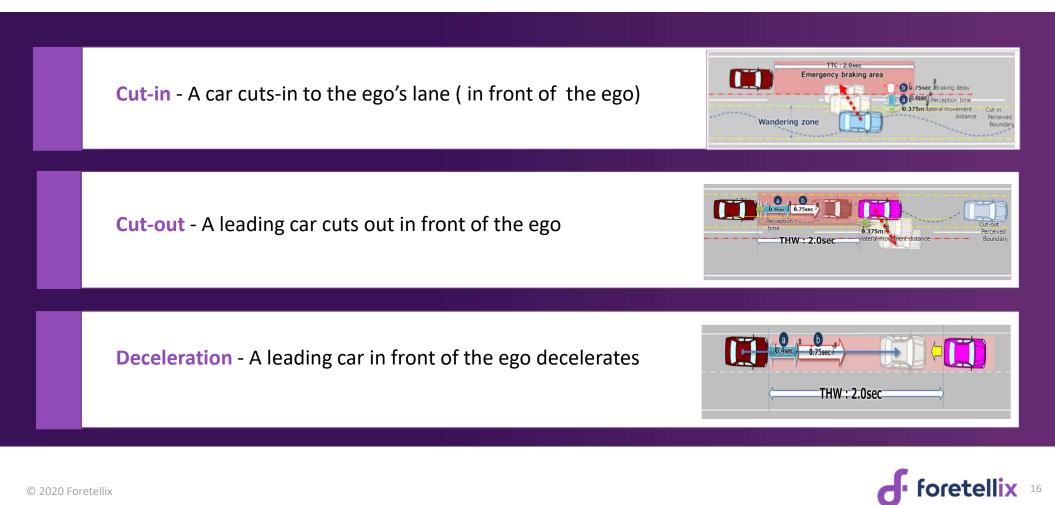
- CDV fits with the overall framework developed in SAKURA project, and proposed to ISO and UNECE/VMAD.
- Coverage plans and goals are expert knowledge source for scenarios. Provides methods to create unforeseeable scenarios
 SAKURA Engineering framework research

Thank you Japan for the wide contribution in all these domains The Building blocks are forming....

A Pragmatic Example:

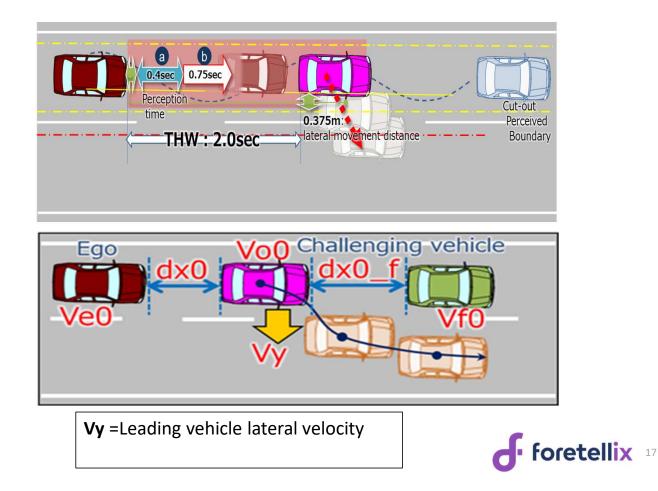
Applying CDV to Verify Regulatory Compliance -ALKS regulation.

© 2020 Foretellix - Confidential


Self-Driv

ALKS UNECE Regulation is Approved. (UN Reg. 157)

- ALKS Automated Lane Keeping System. The system controls the lateral and longitudinal movement of the vehicle for extended periods without further driver command
- This UNECE Regulation is the <u>first ever level 3 ADS regulation</u>
 - Approved on 24 th of June 2020 and will be in force on January 2021
- ALKS's ODD
 - Roads where pedestrians and cyclists are prohibited
 - A physical separation exists and divides the traffic moving in opposite directions
 - The operational speed is limited to 60 km/h maximum.
- The regulation specifies guidance for 3 critical scenarios for testing and simulation (in addition to other testing requirements) – Specific contribution from Japan


ALKS Scenarios

Cut Out - Terminology and Notations

Initial Velocity Ve0 = Ego vehicle Vo0 = Leading vehicle in lane or in adjacent lane Vf0 = Vehicle in front of leading vehicle in lane

Initial Distance dx0 = Distance in Longitudinal direction between the front end of the ego vehicle and the rear end of the leading vehicle dx0_f = Distance in longitudinal direction between front end of leading vehicle and rear end of vehicle in front of leading vehicle

© 2020 Fo

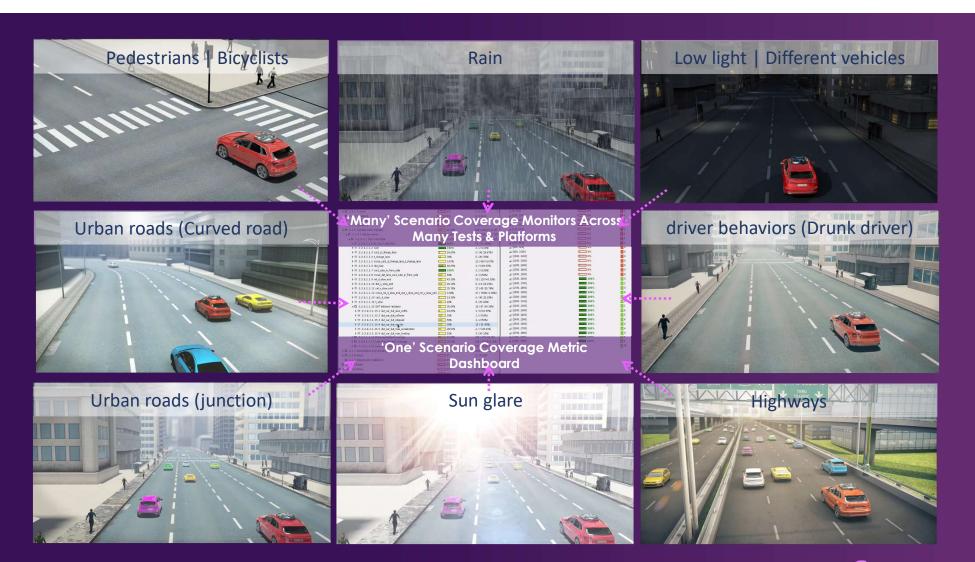
M-SDL Cut Out Scenario Implementation

do serial():

```
dut speed up: parallel( duration: [6..10]second):
   dut.car.drive(path: path) with:
        ego mode(alk)
    other car.drive(path: path, adjust: false)
    in front car.drive(path:path)
lead: parallel(duration: [1..3]second):
    dut.car.drive(path: path) with:
        ego mode(alk)
    other car.drive(path: path, adjust: false) with:
        lane(same as: dut.car)
        position(time: [THW..THW], ahead of: dut.car, at:end)
        speed([0..0]kph, faster than: dut.car, at: end )
    in front car.drive(path: path, adjust: false) with:
        lane(same as: other car)
        speed([0..0]kph)
        position([dxo f+in front car.length ,ahead of:other car, at:end )
cut out: parallel(duration: [1..4]second):
    dut.car.drive(path: path)
    other car.drive(path: path, adjust: false) with:
        change lane()
    in front car.drive(path: path, adjust: false) with:
        keep lane()
```

© 2020 Foretellix speed (speed: [0..0] kph)

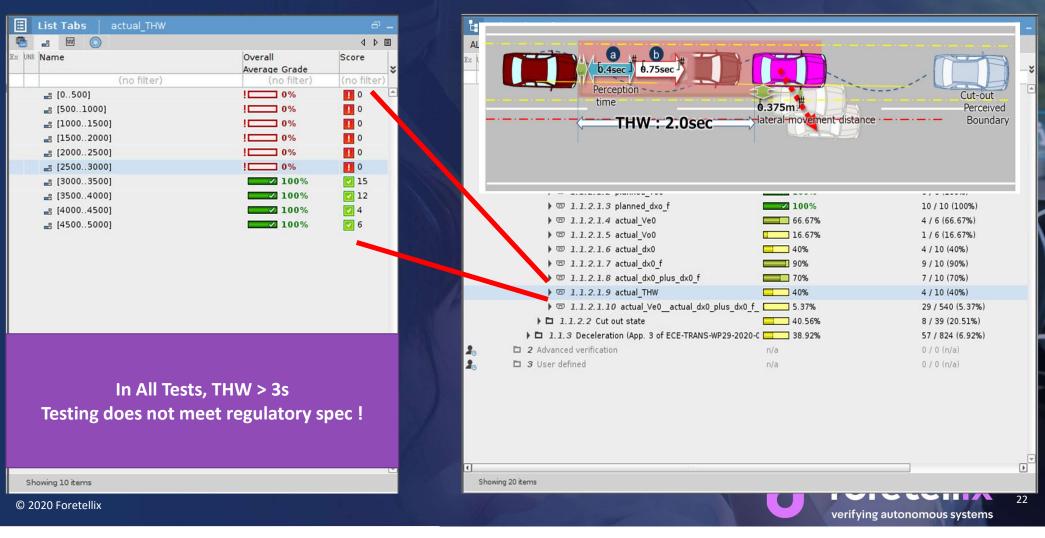
Cut Out- Coverage and Measurements Definitions



!actual_ttc := sample(get_min_ttc(),@cut_out.end) with: cover(it,unit:ms,every: 100,range:[0..3000],text:"Minimal time to collision for ego car")

!actual_Ve0 := sample(dut.car.state.speed,@lead.end) with:

cover(it,unit:kph,range:[0..60],every:10,text:"Actual velocity of ego at cut out start (can go up to 60kph by spec)")

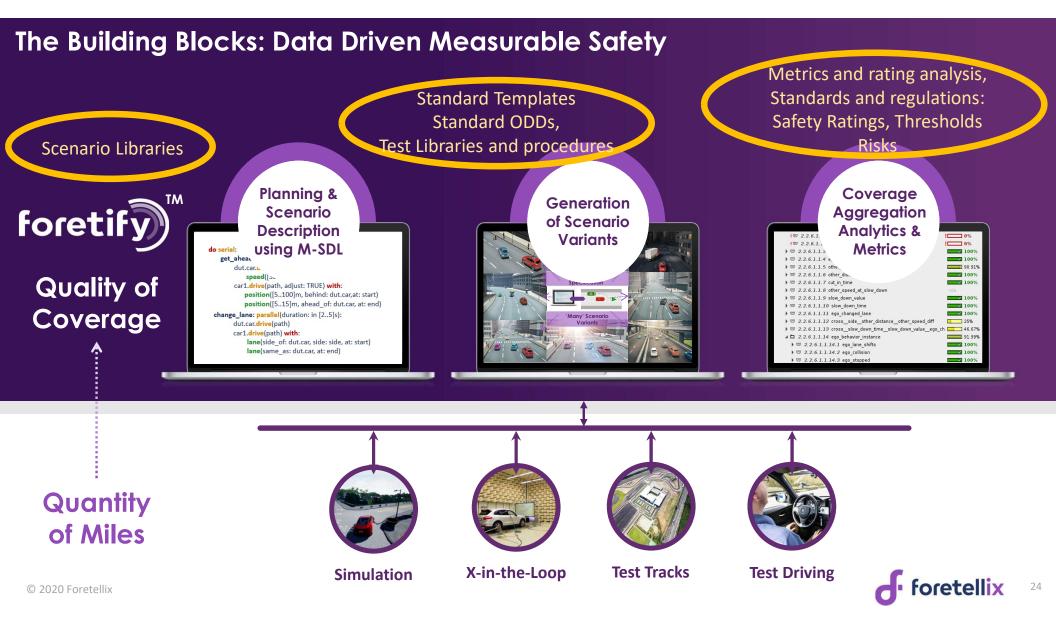

foretellix 19

x UNB Name	Overall Average Grade	Overall Covered	hicles	
(no filter)	(no filter)	(no filter)		
🔺 💟 ALKS	48.29%	191 / 1644 (11.62%)		
🖌 🗖 1 Compliance basic	48.29%	191/1644 (11.62%)		
🖌 🗖 1.1 Scenarios	48.29%	191/1644 (11.62%)	THE CONTRACT	
1.1.1 Cut In (App. 3 of ECE-TRANS-WP29-20	20-081e) 54.23%	46 / 167 (27.54%)		
🖌 🗖 1.1.2 Cut out (App. 3 of ECE-TRANS-WP29-2	2020-081e) 🔲 51.71%	88 / 653 (13.48%)		
🖌 🗖 1.1.2.1 Initial state	62.87%	80 / 614 (13.03%)		
▶	100%	6/6(100%)		
I.1.2.1.2 planned_Vo0	100%	6/6(100%)	driver)	
I.1.2.1.3 planned_dxo_f	100%	10/10(100%)	The statistic lines	
▶	66.67%	4 / 6 (66.67%)		
▶	16.67%	1/6(16.67%)		
) 🗊 1.1.2.1.6 actual_dx0	40%	4 / 10 (40%)		
▶	90%	9/10(90%)		
I.1.2.1.8 actual_dx0_plus_dx0_f	70%	7/10(70%)		
) 🗊 1.1.2.1.9 actual_THW	40%	4 / 10 (40%)		
) 🖾 1.1.2.1.10 actual_Ve0actual_dx0_p	olus_dx0_f 5.37%	29 / 540 (5.37%)		
1.1.2.2 Sut out state	40.56%	8 / 39 (20.51%)	NI STAN	
🕨 🗖 1.1.3 Deceleration (App. 3 of ECE-TRANS-W	/P29-2020-C 📃 38.92%	57 / 824 (6.92%)		
Advanced verification	n/a	0 / 0 (n/a)		
B₀ 🗖 3 User defined	n/a	0 / 0 (n/a)		
Showing 20 items			• foret	

THW COVERAGE/TESTING HOLE

Re-tuning EGO Parameters: THW issue solved

• Re-tuning solved the issue


© 2020 Foretellix

۸	ft -	_
Α	ττρι	r

23

Before			UNR Name		4 Overall Average Grade Score		
Before				-			
Delute			(no filter)	(no filter)	(no filte		
			E [0500]	2 100%	2		
os actual_THW		- 6	E [5001000]	✓ 100%	35		
	Overall	4 ▷ 🗐 Score		✓ 100%	171		
filter)	Average Grade (no filter)	(no filter)	[15002000]	100%	103		
	! 0%	0	[20002500]	✓ 100%	44		
	! 0% ! 0%	0 10 0	= [25003000]	100%			
	! 0%	0			31		
	! 0% ! 0%	0	[30003500]	2 100%	22		
	2 100%	15	[35004000]	✓ 100%	12		
	100%	12	📇 [40004500]	✓ 100%	7		
	2 100%	✓ 4✓ 6	45005000	✓ 100%	7		
			E [50005500]	</td <td>2</td>	2		
		_= [55006000]	100%				
					1		
			E [60006500]	✓ 100%	1		
		₽ [65007000]		0			
		📑 [70007500]	✓ 100%	V 1			
			[75008000]	✓ 100%	1		

List Tabs actual_THW

Summary: Measurable Safety – Coverage Metrics

- Usage of Coverage Metrics Supplies:
 - Goals for testing
 - Threshold of quality and safe behaviors
 - Relative comparison between AVs
- With Coverage Driven Verification AND Using standard templates, standard testing libraries and ODDs – you have a complete, <u>measurable</u>, certification system

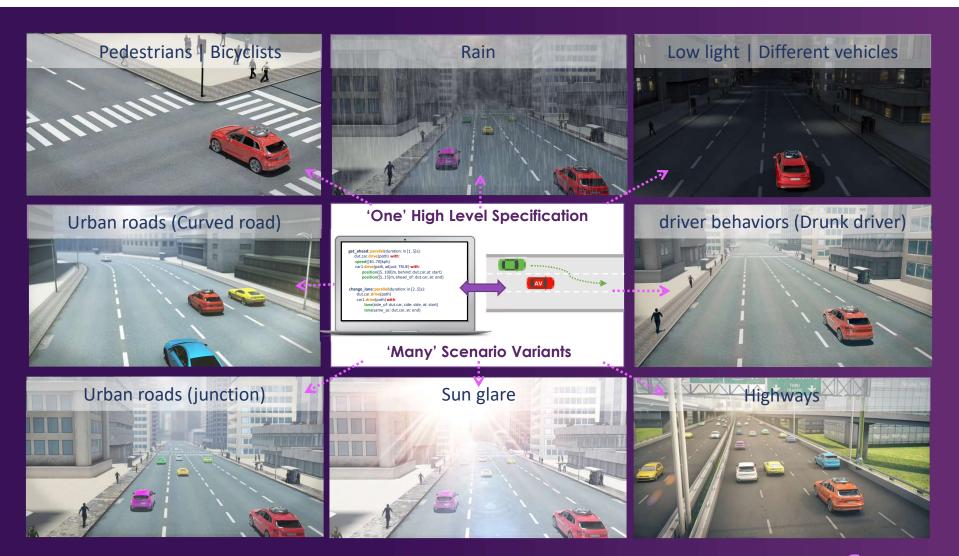
© 2019 Foretellix

All right reserved – Foretellix 2019 ©

25

For More Information

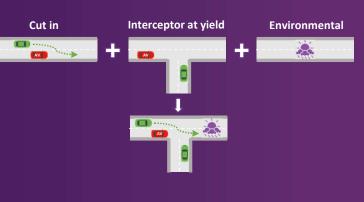
www.Foretellix.com info@foretellix.com blog.foretellix.com

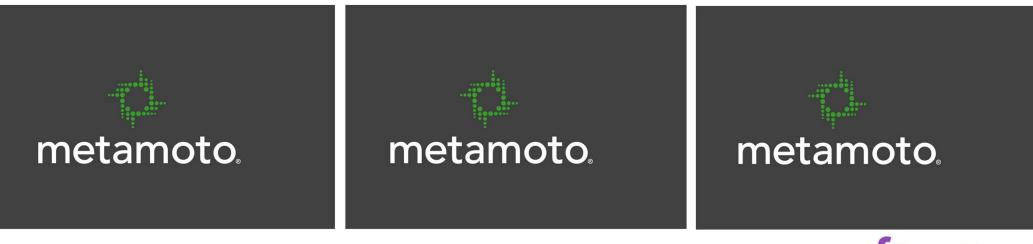


Backup Slides

© 2020 Foretellix

Self-Drivi




Mixing Scenarios

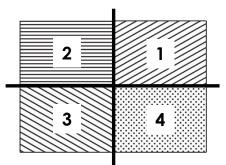
- Create many meaningful scenarios and extend your coverage by mixing and overlaying different scenarios
- Create Combinations of Combinations of edge cases and scenarios a human cannot think about
- Create more powerful & reusable scenario libraries

Provability

Productivity

Coverage Aggregation Analytics & Metrics

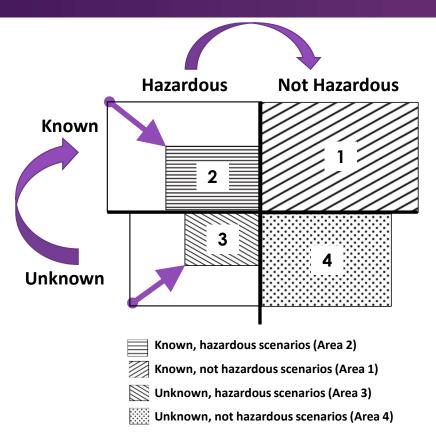
- Independently monitor for scenarios and parameter coverage
- Measure what actually happens
- Automatically optimize based on coverage and KPIs


Provability Productivity

Safety Of The Intended Functionality (SOTIF)

"Absence of unreasonable risk due to hazards resulting from functional insufficiencies of the intended functionality or from reasonably foreseeable misuse by persons"

- SOTIF (ISO 21448) is dealing with Safety of Autonomous Systems, and provides guidance on design, verification, and validation measures
- SOTIF breaks down the possible scenario space to 4 categories
- "The ultimate goal is to evaluate the safety in area 2 and area 3 and to provide an argument that these areas are sufficiently small and the resulting residual risk is acceptable"


Known, hazardous scenarios (Area 2) Known, not hazardous scenarios (Area 1) Unknown, hazardous scenarios (Area 3) Unknown, not hazardous scenarios (Area 4)

foretify)^M – The Full SOTIF Flow

- Foretify[™] is an automation and analysis tool, implementing the Coverage Driven Verification methodology
- Foretify[™] provides a systematic approach to reduce both area 2 and area 3
- Foretify[™] supports the SOTIF process, intended for reaching acceptable levels of risk

For More Information

www.Foretellix.com info@foretellix.com blog.foretellix.com

