
Estimating the Impact of Vehicle Automation on Car Ownership – Findings from the CADIA Project

Prof. Dr. Tobias Kuhnimhof SIP-Adus Meeting, 11/10/2022

In cooperation with Michael Schrömbges (RWTH) Dr. Christine Eisenmann, Dr. Christian Winkler, Dennis Seibert, Nina Thomsen (DLR) Dr. Thomas Meissner, Dr. Peter Phleps (BMW)

CADIA Research Questions and Model Suite

Parameters of CAD (e.g. waiting times, detour factors) If automated private cars (from 2035 onward) and automated mobility services (from 2037 onward) are available: What are possible scenarios for 2050?

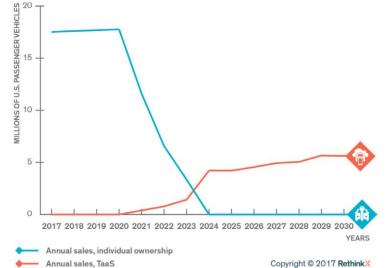
Scenario name	Fully Automated Private cars	Fully Automated Mobility as a Service	
0 - Reference 2050	×	×	
1 - Private car automation	\checkmark	×	
2a - SAV in urban regions	\checkmark	Door-to-door service in cities >100K pop	
2b - SAV in rural regions	\checkmark	Feeder to railways in cities <100K pop	
3 - Full automation	\checkmark	\checkmark	

Vehicle automation impact on car ownership is a key factor – but there is much uncertainty about possible developments

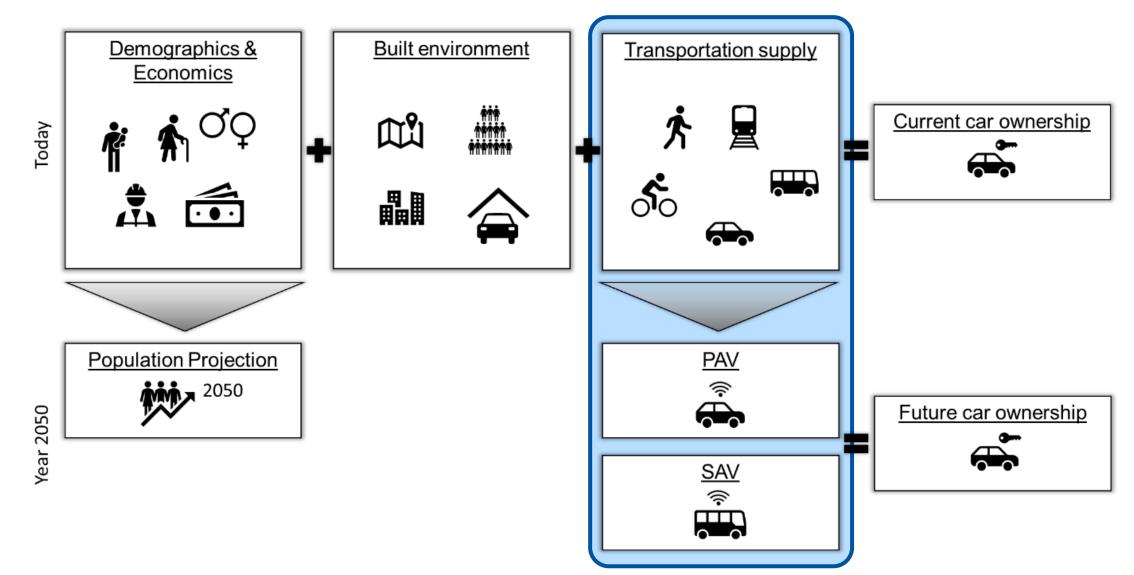
Possibility for other activities while enroute

- \rightarrow increasing appeal of traveling by car
- → increasing private car ownership

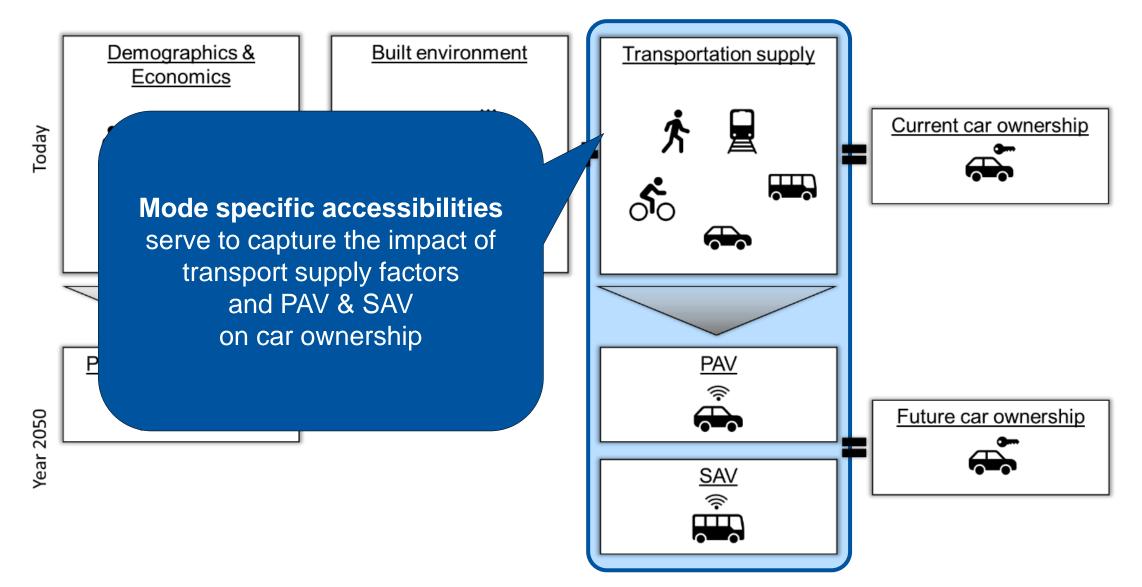
Vehicle automation impact on car ownership is a key factor – but there is much uncertainty about possible developments


Possibility for other activities while enroute

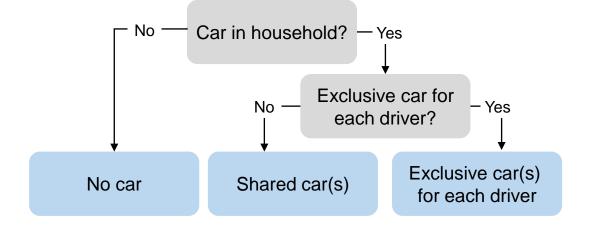
- → increasing appeal of traveling by car
- → increasing private car ownership



Automation facilitates Mobility-as-a-Service

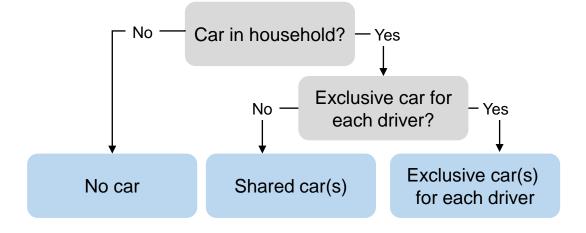

- \rightarrow attractivation of traveling with alternatives
- → declining private car ownership
- » ICE vs. TaaS: Projected trends in annual sales

Modelling the future of car ownership – influential factor overview


Modelling the future of car ownership – influential factor overview

Estimating the impact of mode specific accessibilities on car ownership

Analysis of German National Travel Survey


- Reference year 2017
- household level analysis of car ownership
- ~120.000 households in analysis sample
- Geocoded & imputed accessibility data
- Sequential binary choice model

Estimating the impact of mode specific accessibilities on car ownership

Analysis of German National Travel Survey

- Reference year 2017
- household level analysis of car ownership
- ~120.000 households in analysis sample
- Geocoded & imputed accessibility data
- Sequential binary choice model

Findings:

- Everything else being equal reaching more population within 30 minutes travel time (=accessibility) ...
- walking reduces car ownership
- by train reduces car ownership
- by car increases car ownership

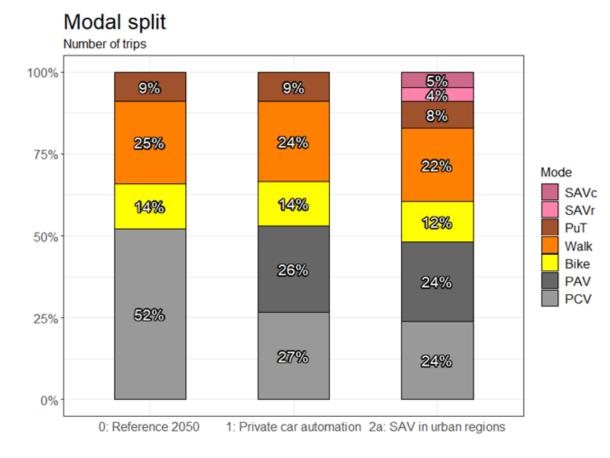
From status quo findings to projecting future car ownership rates

Findings:

Everything else being equal reaching more population within 30 minutes travel time (=accessibility) ...

- walking reduces car ownership
- by train reduces car ownership

by car increases car ownership


Automated mobility services increase accessibility for those without car & contribute to **reduced car ownership**

Automated private cars increase private car accessibility through reduced generalized costs of travel & contribute to **increased car ownership**

Relatively small changes in private car ownership for the different scenarios by type of region

Scenario name	Urban	Rural	Total
0 - Reference 2050	-	-	-
1 - Private car automation	+1.0%	+1.0%	+1.0%
2a - SAV in urban regions	-3.6%	+1.0%	-0.7%
2b - SAV in rural regions	+1.0%	-2.8%	-1.4%
3 - Full automation	-4.8%	-3.4%	-3.9%

Changes in overall travel demand and mode use for automation scenarios*

Billion passenger kilometers 21 100 104 93 38 38 6e+11 50 35 51 46 Mode SAVc SAVr 279 4e+11 PuT 261 Walk Bike 526 PAV PCV 2e+11 265 244 0e+00 0: Reference 2050 1: Private car automation 2a: SAV in urban regions

Annual transport volume

*national German transport model only applied to 3 scenarios

12

CADIA applied a comprehensive model suite to estimate the impact of automation on car ownership and travel demand in 2050

CADIA applied a comprehensive model suite to estimate the impact of automation on car ownership and travel demand in 2050 Influence of mode-specific accessibilities on car ownership served as main factor to model the impact of automation on car ownership

CADIA applied a comprehensive model suite to estimate the impact of automation on car ownership and travel demand in 2050 Influence of mode-specific accessibilities on car ownership served as main factor to model the impact of automation on car ownership

Automation is likely to influence car ownership somewhat – but other factors are likely to be more influential

CADIA applied a comprehensive model suite to estimate the impact of automation on car ownership and travel demand in 2050 Influence of mode-specific accessibilities on car ownership served as main factor to model the impact of automation on car ownership

Automation is likely to influence car ownership somewhat – but other factors are likely to be more influential Automated cars and service likely take their share of the market – but probably don't alter mode use and travel demand altogether

Overall CADIA Project Output: Springer Nature Book Publication

- Titel (tentative): "Acceptance and diffusion of connected and automated driving in Japan and Germany"
- Publication: Early 2023
- Publisher: Springer Nature

Table of Contents

- **1. Introduction** (Winkler et al.)
- 2. Setting the Scene for Automated Mobility: A Comparative Introduction to the Mobility Systems in Germany and Japan (Kuhnimhof, Miyoshi, Taniguchi, Suzuki, Hasegawa, Fleischer, Eisenmann)
- **3. Governance, Policy and Regulation** (*Yamasaki, Fleischer, Schippl*)
- 4. Business analysis and prognosis regarding the German autonomous ride-hailing market (Hennig, Meissner, Krieg, Przioda)
- 5. Social Acceptance of CAD: Conceptual Issues and Empirical Insights (*Fleischer, Taniguchi, Schippl, Yamasaki, Tanaka, Nakao*)
- 6. Transportation effects of CAD in Germany (Schrömbges, Seibert, Thomsen)
- 7. Transportation effects of CAD in Germany (Miyoshi, Watanabe, Kii)
- 8. Concluding remarks (Winkler et al.)

Thank you very much for your attention.

Prof. Dr. Tobias Kuhnimhof

In cooperation with Michael Schrömbges (RWTH) Dr. Christine Eisenmann, Dr. Christian Winkler, Dennis Seibert, Nina Thomsen (DLR) Dr. Thomas Meissner, Dr. Peter Phleps (BMW)

