

SHOW: SHared automation Operating models for Worldwide adoption

Sven Jansen Sr. Consultant Automated Driving | TNO Traffic & Transport

SIP-adus workshop Kyoto Japan | October 2022

Presenter introduction

Sven.jansen@tno.nl Sr. Consultant Automated Driving TNO Traffic and Transport www.tno.nl/en SHOW: Demo site leader NL

SHOW in a nutshell

Deployment of shared, connected and electrified automated vehicles to advance sustainable urban mobility

Coordinated by UITP

70 partners from 13 EU-countries

January 2020 – December 2023

30 Mio. EUR funding from European Commission

SHared automation Operating models for Worldwide adoption

SHOW is the largest initiative for shared Automated Mobility in Europe

70 Automated Vehicles Robotaxis, buses & shuttles

Tampere

Demonstration Plan (currently running services)

On-going real-life pilots (large variety of conditions)

SHOW - Demo site for autonomous shuttles in Carinthia

Take a ride in an automated vehicle in snowy Tampere

SHOW: Demo preview in Karlsruhe

Check out SHOW on YouTube!

3 Families of Use Cases

(highlight are use cases in NL)

UC1: Automated mobility in cities (operational conditions)

- 1. Automated passengers/cargo mobility in Cities under normal traffic & environmental conditions
- 2. Automated passengers/cargo mobility in Cities under complex traffic & environmental conditions
- 3. Interfacing non automated vehicles and travellers (including VRUs)
- 4. Energy sustainable automated passengers/cargo mobility in Cities
- 5. Actual integration to city Traffic Management Centre
- 6. Mixed traffic flows; AVs and non AVs mixed in the same traffic flows
- 7. Connection to Operation Centre for tele-operation and remote supervision
- 8. Platooning for higher speed connectors in people transport
- 9. Cargo platooning for efficiency
- 10. Seamless autonomous transport chains of Automated PT, DRT, MaaS, LaaS

UC2: Automated mixed mobility in cities (service integration)

- 1. Automated mixed spatial mobility
- 2. Automated mixed temporal mobility

UC3: Added Value services for CCAM in

cities (service concepts / business case)

- 1. Self-learning Demand Response Passengers/Cargo mobility
- 2. Big data/AI based added value services for Passengers/ Cargo mobility
- 3. Automated parking applications; namely AVs selfparking functions
- 4. Automated services at bus stops
- 5. Depot management of automated buses
- 6. COVID-SAFE Transport

SHOW building blocks paving the way for Automated Shared Mobility

Technical development

Stakeholders' engagement

Business models & services

Impact assessment

Guidelines & recommendations

Trainings for PTO/PTA & public

Credits: SHOW partners, www.shutterstock.com

SHOW building blocks paving the way for Automated Shared Mobility

Technical development

Stakeholders' engagement

Business models & services

Impact assessment

Guidelines & recommendations

Trainings for PTO/PTA & public

Credits: SHOW partners, www.shutterstock.com

Business model and services

- Addressed in each of the (20) deployment sites
 - Different business models
- Physical and business conditions
 - Available and planned infrastructure
 - Existing (public transport) mobility services
 - Involved service providers and operators
 - Concession based or multi-vender setup

Business model and services

- Deployed service concepts
 - Public transport, privately operated shared vehicles
 - Service operation (scheduled, direct response transport, ...)
 - User groups (inclusive transport, mass transport, ..)
 - Shared transport of people and goods
 - integration in / extending existing transport
 - Deployment area and route (city, campus, hospital, ...)

SHOW building blocks paving the way for Automated Shared Mobility

Technical development

Stakeholders' engagement

Business models & services

Impact assessment

Guidelines & recommendations

Trainings for PTO/PTA & public

Credits: SHOW partners, www.shutterstock.com

SHOW building blocks paving the way for Automated Shared Mobility

Technical development

Stakeholders' engagement

Business models & services

Impact assessment

Guidelines & recommendations

Trainings for PTO/PTA & public

Credits: SHOW partners, www.shutterstock.com

Example of Brainport Eindhoven, The Netherlands C-ITS enabled intersection crossing

- Intersection crossing at normal operational speed to prevent traffic disruption
- C-ITS provides anticipation of traffic situation at intersection, avoiding the need for hard braking
- Validated and evaluated with user tests at proving ground for traffic light and VRU scenarios

Example of Brainport Eindhoven, The Netherlands C-ITS enabled intersection crossing

- Intersection crossing at normal operational speed to prevent traffic disruption
- C-ITS provides anticipation of traffic situation at intersection, avoiding the need for hard braking
- Validated and evaluated with user tests at proving ground for traffic light and VRU scenarios

Example of Brainport Eindhoven, The Netherlands C-ITS enabled intersection crossing

- Shuttle implementation of developed C-ITS function for traffic lights
- Operational service on challenging route
 from remote parking towards university

Appreciation by Royal passengers during demo event

Lessons learned from SHOW pilots in Sweden

Charging & vehicle maintenance

- Prepare for charging, cleaning and maintenance
- Specific knowledge is required

Safety operator's working conditions

- More monotonous than driving a bus
- Skills are of IT nature

Road infrastructure

- Avoid complex road infrastructure
- The shuttle has to adapt to infrastructure (not the contrary)

Anund, et al. (2022): "Lessons learned from setting up a demonstration site with autonomous shuttle operation – based on experience from three cities in Europe". Journal of Urban Mobility.

Get to know SHOW better

3 views + 2 days ago

7 views • 2 days ago

43 views • 11 days ago

135 views • 2 weeks ago

49 views • 2 months ago

International Collaborations

International Cooperation in SHOW

 SHOW aims at pursuing cooperation beyond the European borders in the context of targeted twinning actions

• Targeted countries: US, Japan, Singapore, Taiwan, Australia, China, and South Korea

Japan: Connection with new project CooL4

CooL4 Consortium Academia and Industry collaboration The University of Tokyo ITS Japan The University of Electro-Communications Academia Nagoya University Industries & Doshisha University Private Sectors National Institute of Advanced Industrial Science and Technology **Research Institute** Regional Mitsubishi Research Institute Organization Japan Automotive Research Institute Mitsui Fudosan Developer Construction Shimizu Corporation Electronic Panasonic Fleet Management BOLDLY

Agreed topics for collaboration with SHOW

Topic 1: Automated Vehicle Behavior

- At intersection, in case of GPS-loss, to avoid parked vehicles
- Use of V2X communication
- Remote supervision and control

Topic 2: Regulatory issues

- Legal framework, type approval and homologation of L4 vehicles
- Propose modifications of relevant regulations
- Define international rules on liability

Topic 3: Stakeholders' perception of AV services

- Comparison of perception of AV services in different countries
- Business models & services

1st webinar on Regulatory Issues 02:38:12 The new EU ADS Regulation SHOW – CooL4 webinar M. Cristina GALASSI (EC-JRC) 24 June 2022 6.24 Current status of legislation related 2022 to automated vehicles in Japan C-ROADS C-ROADS -C-ITS SERVICE VALIDATION AS BASIS FOR CCAM **TESTING AND CERTIFICATION SCHEMES** Alexander Frötscher, AustriaTech Legal Research Team Yuka Nakagawa Taketo Morita Yasuyori lwatsuki Takashi Hikasa Co-financed by the European Union Connecting Europe Facility www.c-roads.eu

Sven Jansen sven.jansen@tno.nl

Leader of Brainport demo site in SHOW TNO – Independent research organization in The Netherlands https://www.tno.nl/en/

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 875530.