

Impact Assessment(社会的影響)

三好 博昭

SIP-adus国際連携WG/同志社大学

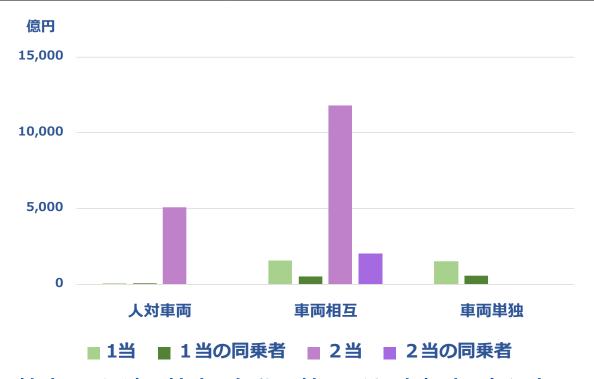
- 1. 自動走行システムの経済的性質
- 2. 自動走行システム普及に向けた対策
- 3. 日本の産業構造における自動車産業
- 4. 参考資料

自動走行システムの経済 的性質

アクティブ・セーフティ技術は、装置搭載車両の乗員だけではなく、事故の相手方をも守る技術。言い換えれば「安全の分かち合い技術」

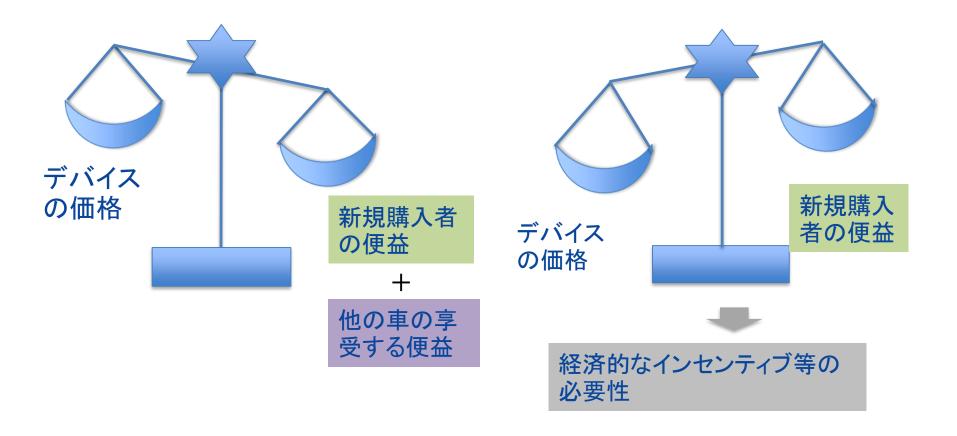
しかし、安全の分かち合い方や経済的性質は、自動走行システムのシステム形態(自律型、協調型等)によって異なる。

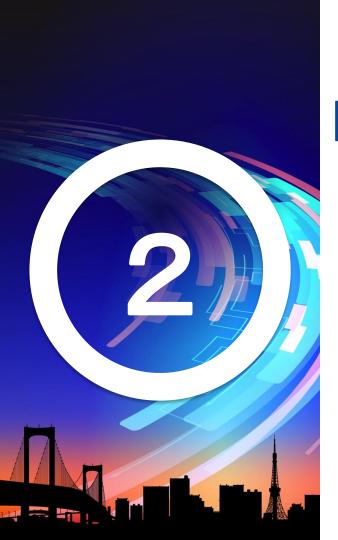
普及のためにはそれを踏まえた対策が必要



SSIP 自動走行システムの便益の帰属(追突防止技術を例に)

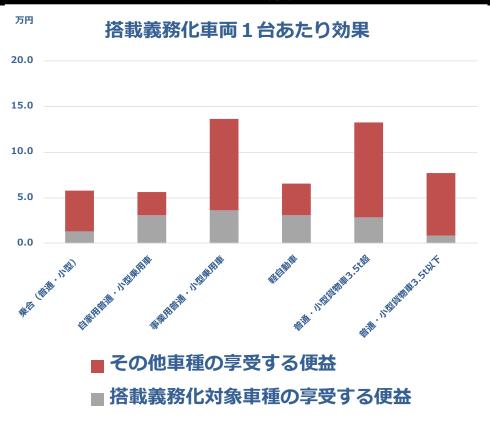
システム		新規購入者の便益	他の車の享受する便益(外部性) 同一システムの 手動走行車はシステムの なる自動走行		
自律型		前方車への追突回避	後続車からの追突回避		
協調型	車車協調 (またはクラ ウド協調)	他の同一システムの自動走行車との間の事故回避	回避できる事故の増加	ナシ	
	路車協調	前方車への追突回避	後続車から	5の追突回避	


事故類型別当事者別損失額(2015)



注)1当が四輪車、2当が四輪車・自動二輪・原付・自転車・歩行者・その他の事故を集計 データ)2015年の人身損傷程度別の損失額(参考資料参照)と被害者数等を利用。被害 者数はITARDAの交通事故集計ツールを利用して集計

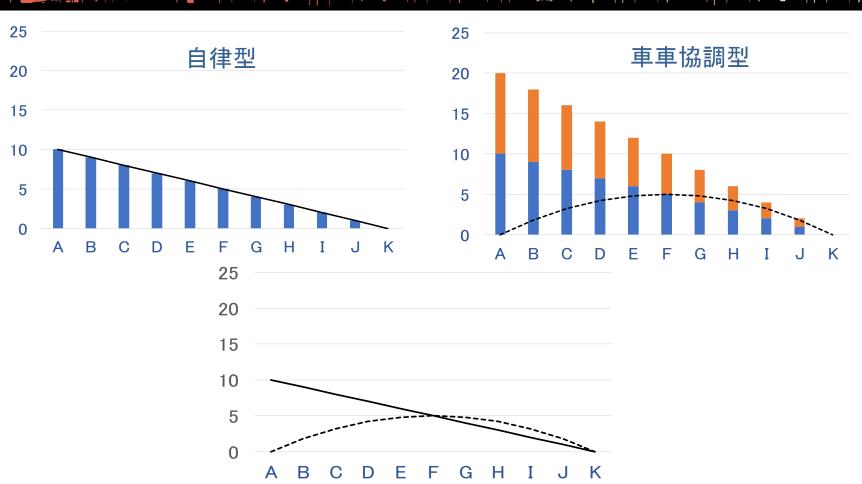
SSIP 2. 市場メカニズムでは過小にしか普及しない危険性。



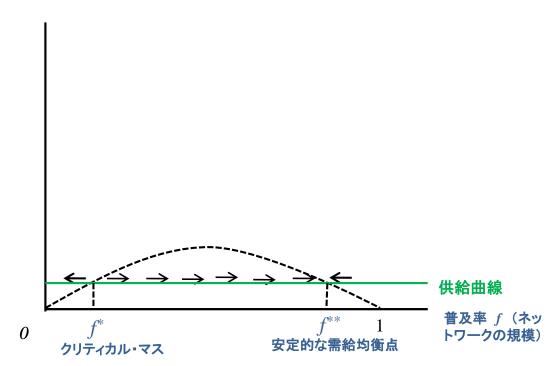
自動走行システム普及に 向けた対策

自動走行システムを社会に適切に普及させるためには、自動走行システムの経済的性質を踏まえた対策が必要

- 装置搭載に対する経済的インセンティブの設定
- 装置の搭載義務化
- 技術の組み合わせ方による需要のコントロール

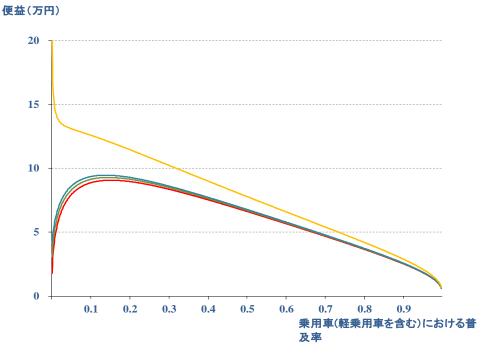


- 注1)装置搭載によって四輪車間追突 事故が100%回避可能と仮定して 各車種の平均使用年数中の便益 を計算(現在価値化)
- 注2)2015年の人身損傷程度別の損失 額(参考資料参照)と被害者数等 を利用して計算。被害者数は ITARDAの交通事故統合データ(マ クロデータ)を利用
- 注3) 便益には事故当事者が直接享受 しない便益(事業主体の損失回避、 公的機関の損失回避、保険給付 の対象となる金銭的損失)も含む
- 注4) 搭載義務化対象車種の享受する 便益には、同一車種の車両から の後方からの追突が回避できると いう便益を含む


SSIP

需要曲線の形状

価格



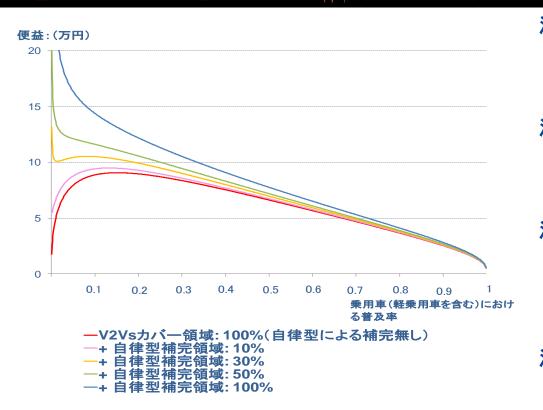
出所)Rohlfs, J.H., A theory of independent demand for a communications service. Bell Journal of Economics and Management Science 5(1), 1974, pp.16-37. を参考にしながら三好が作成

搭載義務化の効果2(車車協調)

一義務化なし

--タクシーへの搭載義務化

一バス・マイクロバスへの搭載義務化


一大型・中型トラックへの搭載義務化

出所)三好推計

- 注1)装置搭載によって<u>四輪車間車両相互事故が100%回避可能</u>と仮定し乗用車の平均使用年数中の便益を計算(現在価値化)
- 注2)グラフは、乗用車の装置への需要曲線が、他車種の搭載義務化によって、どのように変化するかを示す
- 注3)計算にあたっては2012年の人身 損傷程度別の損失額(参考資料 参照)と被害者数等を利用。被害 者数はITARDAの交通事故集計 ツールを利用して集計
- 注4) 便益には事故当事者が直接享受 しない便益(事業主体の損失回避、 公的機関の損失回避、保険給付 の対象となる金銭的損失)も含む

異なる技術の組み合わせ

注1)装置搭載によって四輪車間車 両相互事故が100%回避可能と 仮定し乗用車の平均使用年数 中の便益を計算(現在価値化) 注2)グラフは、乗用車の装置への需 要曲線が、自律型と車車協調 型との組み合わせでどのように 変化するかを示す 注3)計算にあたっては2012年の人

> 身損傷程度別の損失額と被害 者数等を利用。被害者数は ITARDAの交通事故集計ツール を利用して集計

注4) 便益には事故当事者が直接享 受しない便益(事業主体の損失 回避、公的機関の損失回避、保 ving 険給付の対象となる金銭的損 ^{図3} 失)も含む

出所) Hiroaki Miyoshi, Economic Effects of Combining Technologies in Advanced Driving Assistance Systems (Scientific Paper), ITS World Congress 2017, Montrealの図3 に変更を加えて作成(計算の各種前提条件の詳細はこの資料を参照下さい)

日本の産業構造における自動車産業

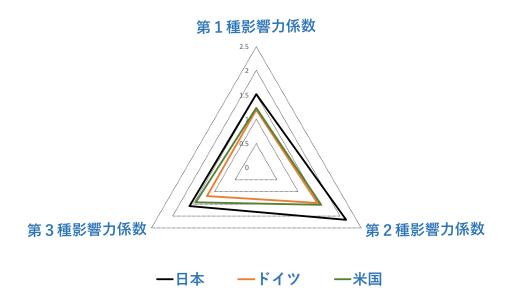
自動車産業は、日本の産業の中で最も影響力係数の大きい 部門であり、投入部品の変化や最終需要の変化は日本経済 に大きな影響を与える。

影響力係数とは

◆3つの影響力係数

■ 第1種影響力係数: 当該産業部門の最終需要1単位によって引き起こされる 産業全体に対する生産波及の大きさを表す(部門全体の平均を1として相対 化された値)

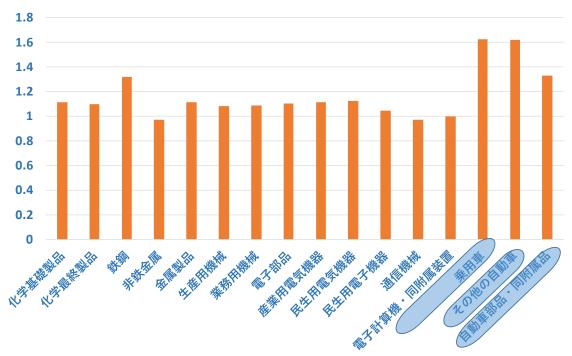
عمكا فالمرأأ وموكا والأراب أرابا أرابي الكاريات إأوسوا


- 第2種影響力係数:自部門への直接効果 1.0 を除いた間接効果だけを対象 として計算
- 第3種影響力係数:自部門への影響を完全に除去し、他部門への影響度合だけを対象として計算

出所)総務省ウエッブサイト「産業連関分析のための各種係数の内容と計算方法」を参照して作成

(http://www.soumu.go.jp/toukei_toukatsu/data/io/bunseki.htm)

SIP 自動車部門の影響力係数



注) OECD. Statの 2011年の Input-Output Tables (http://stats.oecd.org/Index.aspx?DataSetCode=IOTS)を用いて計算。自動車部門として "Motor vehicles, trailers and semi-trailers"を利用

出所) Hiroaki Miyoshi and Masanobu Kii, Macro Impact of Autonomous vehicles, Special Interest Session, ITS World Congress 2017, Montreal のp. 7の図に変更を加えて作成 (http://itsworldcongress2017.org/wp-content/uploads/2017/11/miyoshi 20171031.pdf)

第1種影響力係数の部門間比較

注)経済産業省「2014年延長産業連関表」から作成

出所) Hiroaki Miyoshi and Masanobu Kii, Macro Impact of Autonomous vehicles, Special Interest Session, ITS World Congress 2017, Montreal のp. 8の図に変更を加えて作成 (http://itsworldcongress2017.org/wp-content/uploads/2017/11/miyoshi_20171031.pdf)

- ■本研究の実施にあたっては、JSPS科研費25281071(次世代自動車の普及政策とそのグローバル・ベネフィットに関する研究)並びに16K12830(自動走行システムの社会的厚生分析)の助成を受けている。
- ■また、公益財団法人交通事故総合分析センター(ITARDA)の客員研究員としての成果を一部活用している。

参考資料

交通事故による損失額。

			損失額(10億円)			被害者1名あたりの損失額(千円)				
		_	死亡	後遺障害	傷害	物損	合計	死亡	後遺障害	傷害
金銭的損失	人的 損失	逸失利益・治療関係 費・葬祭費	114	428	290	-	832	16,025	6,379	256
		慰謝料	87	100	340	-	527	12,290	1,485	300
		小計	201	528	630	-	1,359	28,315	7,864	555
	物的排	失	3	26	433	1,249	1,711	382	382	382
	事業主	上体の損失	6	14	61	_	81	797	207	54
	各種公	め機関の損失	14	82	712	20	828	2,025	1,214	628
	金銭的]損失合計	223	649	1,837	1,269	3,979	31,518	9,667	1,619
非金銭的損失	死傷損		1,509	577	269	_	2,355	213,000	8,587	237
総計(慰謝料	分除外)		1,646	1,126	1,766	1,269	5,807	232,228	16,769	1,557
総計(慰謝料	分除外t	せず)	1,733	1,226	2,106	1,269	6,334	244,518	18,254	1,856

出所)内閣府政策統括官『平成23年 交通事故の被害・損失の経済的分析に関する調査 報告書』 (以下、内閣府(2012)) 表6-1と表6-4から作成

非金銭的損失は以下のように分類されるが、前頁の損失額 に含まれるのは「被害者本人」分のみ

	主体	内容			
被害者側	被害者本人	自分自身が交通事故に遭うことで被る痛み、苦しみなど			
	被害者の家族及び友人	被害者が交通事故に遭うことを通じて被る悲しみなど			
加害者側	加害者本人	交通事故を起こしたことによる加害者の信用低下や失職などを 通じて被る生活の質の低下など			
加吉省側	加害者の家族及び友人	加害者が交通事故を起こしたことを通じて被る悲しみなど			
第三者		交通事故が起きたという情報を通じて感じる悲しみなど			

出所)内閣府(2012) p. 17の定義

SIP この分析で用いている人身損傷程度別損失額

交通事故統合データ		対応させた内閣府(2012)	被害者1名あたりの損失額(万円)		
の人身損傷程度		の区分	2012年	2015年	
死亡	\rightarrow	死亡	23,403	24,145	
重傷	\rightarrow	後遺障害	1,747	1,802	
軽傷	\rightarrow	傷害	178	183	

出所)損失額は内閣府(2012)の「被害者1名あたりの損失額(慰謝料分除外せず)」に GDPデフレータを乗じて2012年と2015年の貨幣価値に換算した数値