Beyond the Traditional Digital Map: Digital Horizon Data for Automated Driving

T. Russell Shields CEO, Newco (Name to Be Announced)

Workshop on Connected and Automated Driving Systems, Tokyo, Japan

17 November 2014

The Enabling Technologies for Marketable Digital Horizons Are Becoming Available

In some markets, digital horizon data will be in vehicles in 2017 for fuel economy, safety, and comfort in-vehicle control processes

- The dominant barrier is data communications costs
 - The spread of carrier Wi-Fi will make practical probe data communications for static road geometry data
 - Over the next few years, many vehicles will be sold with built-in data communications capabilities
- High-speed, multi-core processors will continue to improve in-vehicle processing capacity while costs are reduced
- High-capacity data storage will become a commodity

Needed: An Approach That Is Very Different from Traditional Digital Maps

The digital horizon data can only be made by collecting probe data from vehicles

Data Collection

- Collecting probe data of the empty road and related road furniture from in-vehicle sensors
- Transmitting mostly over carrier Wi-Fi through the vehicle's data communications capability and the vehicle manufacturer's back end

Data Consolidation

- Combining probe data to create an extensive digital horizon database of the static road network
- Rating the reliability of each data element

Data Distribution

- Updating the in-vehicle digital horizon database for the driving area of each vehicle by sending only differences
- Not sending traditional digital map structures such as tiles because the digital horizon database is a simple, flat structure
- Transmitting mostly over carrier Wi-Fi through the vehicle manufacturer's back end
- Tailoring the digital horizon database for specific in-vehicle control processes

Digital Horizon Data: Adding Images

Digital horizon data will evolve to add images of the empty road

- Initial deployment of digital horizon data will be conventional data elements and attributes
 - Flat file of road geometry and road furniture that is accessed as the vehicle moves along the road
 - For fuel economy, safety, and comfort in-vehicle control processes and initial deployments of HAD
 - Extensive, fresh, accurate and rated for reliability
- The main sensors for highly automated driving (HAD) are image sensors (camera, radar/lidar)
- For HAD, digital horizon data should also provide a reference of what those sensors 'see' in the way that they 'see' it
 - Initial digital horizon data will need to be complemented by image-based representations of the road ahead
 - Digital horizon data for HAD will have empty road reference views of what each sensor 'sees'

Cost Is a Major Factor for Probe Data Communications Requirements

- For HAD, support for the service life of the vehicle is likely to be necessary
- The cost of data communications must be carefully controlled using intelligent strategies
 - Big cost reductions for a vehicle manufacturer can come from small cost reductions per year per vehicle when data communications costs are paid with the sale of the vehicle for the life of the vehicle
- The protocol and frequencies used by the in-vehicle data communications device should be updatable over the air
 - Software-defined radio technology should be commercialized to avoid vehicle equipment replacement
 - Costs will also be reduced if the V2V DSRC protocol is mainstream TD-LTE Direct DSRC protocol

Data Communications Volumes Must Be Carefully Managed

- Compress image data highly
 - Possibly more than 1,000:1
- Do not send tiles or similar constructs
 - Not needed because the database is a flat file
- Communicate only differences between new data and existing data
 - Differences between in-vehicle database and new data
 - Differences between the master database in the server and the in-vehicle database
- Categorize and communicate data according to priorities

 safety, distance from vehicle, etc.
 - Send safety-relevant data for the near area by cellular
 - Send non-safety-relevant or safety-relevant data about non-near areas by carrier Wi-Fi or other low-cost methods when they are available
 - Sending this data by cellular is also possible but is likely to be too expensive for to be practical until cellular carriers change their pricing models and options

Thank You