

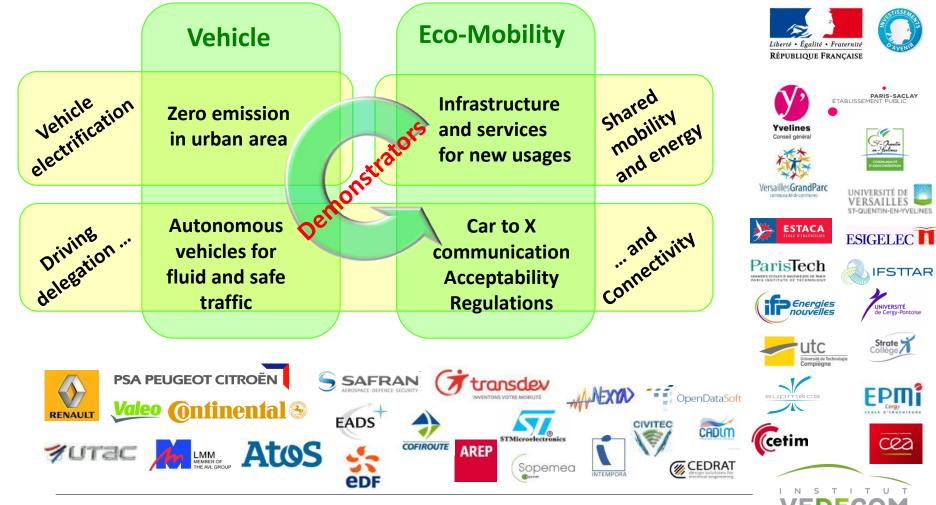
www.erticonetwork.com

http://vra-net.eu

Sharing roles between driver and vehicle system a European perspective

Ebru DOGAN, PhD

OUTLINE


2

- VEDECOM and VRA Network
- Existing European projects treating human factors issues in vehicle automation
- Joint driver-vehicle system / Collaborative automation
- VEDECOM's research

VEDECOM

an institute for the carbon-free and connected vehicle and its mobility a public-private partnership federating industrial & academic research in France

Dogan, SIP-adus WS, 17-18 November, United Nations University, Tokyo

Objectives of VRA Support Action

Create an active European network of experts on Vehicle and Road Automation and foster cooperation within the Automation WG

Identify deployment needs for Vehicle and Road Automation

Contribute to EU-US-JPN trilateral WG on road vehicle automation (EC – US DoT – MLIT)

> Deployment paths, Regulatory issues, Testing, Connectivity, Evaluation of Benefits, Digital Infrastructure, Human Factors, Decision and Control Algorithms

Promote the Research on Vehicle and Road Automation

EUROPEAN PROJECTS SO FAR ...

HMI design for automated vehicle

- HAVEit (finalized in July 2011) Highly Automated Vehicles for Intelligent Transport <u>www.haveit-eu.org</u>
- InteractIVe (finalized in November 2013) Accident avoidance by active intervention for Intelligent Vehicles <u>http://interactive-ip.eu</u>
- D3CoS (finalized in February 2014) Designing Dynamic Distributed Cooperative Human-Machine Systems <u>www.d3cos.eu</u>

CURRENT EUROPEAN PROJECTS

AdaptIVe – Automated Driving Applications and Technologies for Intelligent Vehicles <u>www.adaptive-ip.eu</u>

HFAuto – Human Factors of Automated Driving http://hf-auto.eu/

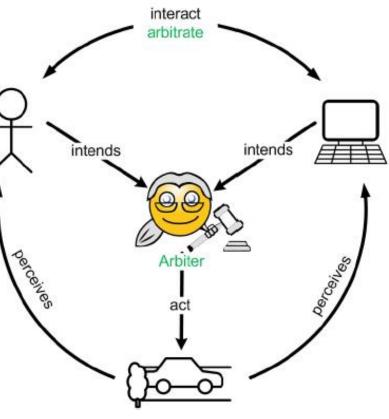
VRA – Vehicle Road Automation support action http://vra-net.eu

HFauto

Dogan, SIP-adus WS, 17-18 November, United Nations University, Tokyo

VEHICLE ROAD AUTOMATION NETWORK AND I-MOBILITY FORUM HUMAN FACTORS SUBGROUP

- DLR (Germany), Uni. Roma (Italy), Uni. Chalmers (Sweden),
- France: IFSTTAR, Valeo, VEDECOM
- Greece: ICCS, HIT
- Netherlands: TU Delft, TU Eindhoven,
- UK: TRL, ITS Leeds


Mobility

- Human factors-related recommendations and roadmaps to European Commission
 - Implications of highly automated road transport for drivers, VRUs, society
 - Cooperative driver-vehicle system, HMI design (usability), and controllability
 - Social acceptability

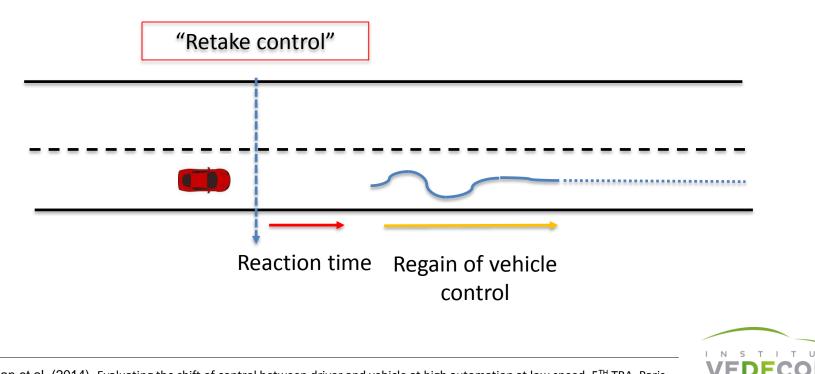
"Humans: still vital after all these years of automation" * Joint Driver-Automation System **

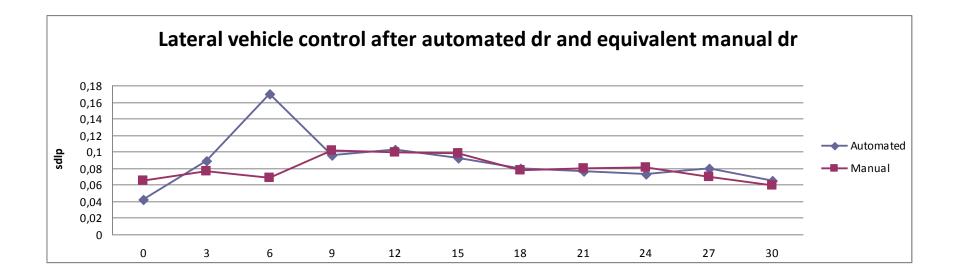
- is a human perception-action model, which considers the vehicle as a cognitive agent
- implies intuitive interactions between the driver and vehicle, relying on complementary skills that are organized together to achieve a common goal.
- The basis of such system is a continuous interaction between the agents with respect to their intentions, actions, abilities, and limitations.
- Conflicts between agents are resolved by arbitration.

8

Figure: Kelsch (2014). .Joint.System.As.a.guiding.approach.for.driver-automation.system.design.H-CPS-I WS, 22-23 Sept, Paris

^{*} Parasuraman, R. & Wickens, C.D. (2008). Humans: Still vital after all these years of automation. Human Factors, 50, 511-520. VED


- How to avoid having a passive driver?
- Return the automated task briefly to the driver at low workload? *
- What is the correct task allocation keeping the integrity of driving task?
- Conflict between the driver and the vehicle?


9

TRANSITION OF CONTROL: EXPERIMENTS CARRIED OUT AT VEDECOM

 Transition of control and driver performance at low-speed (50 km/h) automation on highway (i.e. Traffic Jam Assist)*

TRANSITION OF CONTROL: EXPERIMENTS CARRIED OUT AT VEDECOM

Cooperation in joint driver-vehicle system during the regain of vehicle control

11

* Dogan et al. (2014). Evaluating the shift of control between driver and vehicle at high automation at low speed. 5TH TRA, Paris

TRANSITION OF CONTROL: EXPERIMENTS CARRIED OUT AT VEDECOM

- Maneuvering performance subsequent to transition of control
- Effect of different tasks on HMI (writing emails versus watching video clips)

* Dogan et al. (2014). Changes in driver behavior subsequent to transition of control in a highly automated driving at low speed. 3rd Conference on Automotive Electronic Systems, Paris.

ΕD

F

TRANSITION OF CONTROL: UPCOMING PROJECTS AT VEDECOM

- Two PhD thesis on situation awareness
- A post-doc project on driver state assessment

THANK YOU FOR YOUR ATTENTION

ebru.dogan@vedecom.fr

Dogan, SIP-adus WS, 17-18 November, United Nations University, Tokyo