

Automated road transport systems in European cities

Adriano Alessandrini CTL – University of Rome

www.citymobil2.eu

14/04/2014

CityMobil2

- EC funded research project
- Main goal: Remove the barriers to the deployment of fully automated urban road mobility
 - 45 partners
 - 12 cities
 - 5 Automated Road Transport Systems manufacturers,
 - 15 M€ budget,
 - 9.5 M€ EC funding, FP7

– 48 months duration (2012-2016)

Complementing and integrating mass transits

Some figures to explain why driverless for last mile

			-					_	
			5 si	5 sit car very		t car little	10 passenger		assenger
	60-100		use	ed often	used little		automated minibus		omated car
	passenge	er bus	cha	hanged		inged	current prices		luced price
Cost of a vehicle	€ 200,0	00.00	€	30,000.00	€	18,000.00	€ 100,000.00	€	30,000.00
km per year		90000		40000		10000	25000		25000
occupancy rate (low)		5		1.2		1.3	0.65		0.65
occupancy rate (high)		25		1.2		1.3	3.5		1.4
Total cost per km	€	2.12	€	1.47	€	4.94	€ 0.72	€	0.27
Total cost per sit per km	€	0.03	€	0.29	€	1.24	€ 0.07	€	0.07
Cost per km excluding driver	€	1.12	€	0.34	€	0.44	€ 0.72	€	0.27
Cost per km per pax (low occ.)	€	0.42	€	0.28	€	0.34	€ 1.11	€	0.42
Cost per km per pax (high occ.)	€	0.08	€	0.28	€	0.34	€ 0.21	€	0.19

Main research aspects addressed by CityMobil2

- Legal aspects lack of a legal framework
- Implementation of real systems in cities
 - Many cities want to be second but none first
 - 2 fleets of 6 10-passengers vehicles each selected
 - 7 ground breaking city demonstrations and 3 showcases are being implemented
- Socio-economic effects of vehicle automation

CityMobil2 up to date calendar

- 2014 summer small demo Oristano (IT)
 - completed
- 2014 September showcase in Leon (ES)
 - completed
- 2014-15 winter and spring large demo in Lausanne (CH)
 - about to start
- 2014-15 winter and spring large demo in Lausanne (CH)
 about to start
- 2015 summer small demo in Vantaa (FI)
- 2015 September showcase in Milan (IT)
- 2015 September showcase in CERN (Geneva-CH)
- 2015 October showcase at ITSWC (Bordeaux FR) TBC
- 2015-16 summer, autumn and winter large demo Trikala (EL)
- 2016 timing to be confirmed small demo San Sebastian (ES)
- 2016 timing to be confirmed small demo Sophia Antipolis (FR)

First demo in Oristano completed

Panorama of Torre Grande beach

Demonstrator route

- Seaside resort of "Torregrande"
- Pedestrian only waterfront promenade
- Alternate one-way ARTS lane with crossing point at stop 4
- Total line length: 2560 m

C

Number of stops: 7; avg. distance 215m

Oristano

8 km

Legal status

- Site: being the site of the demonstrator a pedestrian area, a deliberation by the commander of the Local Police is sufficient to start the demonstrator.
- Vehicles: the vehicles are not certified to run on public roads; they have a "test" license plate for research and testing purposes
- Passengers registered as "testers" in order to be allowed onboard. Minors were allowed but had to be registered by a parent or a guardian.

The news video of the demo

Research work to do on Oristano results

- Analysing data from the collected questionnaires to assess user reaction
- Analysing recored data from the vehicles to measure performances

Analysing dat from cameras to assess non-user reactions

Initial statistics

 Operating days: 	38
 Vehicle trips: 	837
 Vehicle trips per day: 	22
 Total distance covered: 	1100 km
 Registered testers: 	1600
 Total number of passenger trips: 	3000
 Average daily passenger trips: 	79
 Average vehicle occupancy: 	3.5 (35%)
 Peak number of passenger trips in or 	ne day: 188 (31/7)
 Filled tester questionnaires: 	330
 Average commercial speed: depending on pedestrian density 	5.5-8 km/h

Business case reflections induced by Oristano early results

- With
 - 6.5 km/h average speed,
 - 5 days a week and 8 hours a day operations and
 - 35% occupancy rate
- the yearly mileage goes down to 13500 km/year and
- the cost per passenger kilometre goes up to 0.37 €/pkm
- No longer competing with private cars (0.28-0.34 €/pkm)
- Without even considering ARTS management costs and company profit

Which solution for ARTS business?

- With
 - 14.5 km/h average commercial speed,
 - Oristano operating times and
 - 35% occupancy rate
- the yearly mileage goes up to 30000 km/year and
- the cost per passenger kilometre down to 0.17 €/pkm
- Beating private cars (0.28-0.34 €/pkm) even with a 60% overhead to manage ARTS and have some company profits

Where then to demonstrate ARTS profitably?

- In California
 - where ARTS can be legal
- On a site where transport demand allows
 - 10 passenger vehicles and
 - 35% occupancy rate
 - and where infrastructures would allow 14.5 km/h commercial speed.
- Does a site like that exist?

Thank you for listening

www.citymobil2.eu

adriano.alessandrini@uniroma1.it

Technical issues

- Vehicles not equipped with lifting board and retention systems for wheelchairs
- Trees canopies limit GPS signal which is occasionally lost and required human intervention
- Mixed pedestrian traffic requires lower speed than forecasted
- Service & delivery vehicles occasionally occupy ARTS lane and require human intervention

Good points

- Media coverage above expectations
- Great curiosity and participation of local population
- Great involvement and enthusiams of bus drivers as onboard "supervisors"
- Appreciated service to the elderly and the disabled
- Presence of ARTS on the boulevard generally accepted and tolerated, despite pre-demo criticism
- Enrolement of "testers" above expectations

Robosoft's vehicle (final design)

LIGIERS's VIPA II (final design)

CityMobil2 WBS and phases

Levels of automation and how to get there

Road classification (TRB' HCM)

Road class	F	E	D	С	В	А
	Walkway	Collector street	Urban street	Arterial road	Highway	Freeway
Driveway/access density	-	Very high	High	Moderate	Very low	Very low
Parking	-	Significant	Significant	Some	No	No
Separate left-turn	-	No	Some	Usually	Yes	No
lanes						
Signals/km	-	6-10	4-8	2-6	0.3-1.2	-
Speed limit	0	15-40	40-55	55-80	70-100	100-130
(km/h)						
Pedestrian	Very	Important	Usually	Some	Very little	No
activity	Important					
Roadside	Very high	Very high	High density	Medium to	Low density	Very low
development	density	density		moderate		density
				density		

Road classification applicable to CityMobil2

Road class	F	E	D	С	В	Α
Belgium		20/30	50	70	90	120
Spain			50	70	80/90/100	100/120
Finland			50		80	100 / 120
France		30	50	70 / 80	80 / 90	100/110/ 130
Greece			50		70 / 90	90/110/120
Italy			50	70	90	110 / 130
Switzerland		20/30	50	60 / 70	80	100/120

Scenarios analyzed for the CityMobil2 demonstrations

Infrastructure delimitation elements

Level	Elements	Category		
0	No segregation	Shared		
1	Horizontal marking			
2	Guidance paving			
3	Differentiated lane paving			
4	Lane delimiter			
5	Surmountable curb	Dedicated		
6	Walkways (sidewalks)	Dedicated		
7	Traffic median			
8	Discontinuous urban furniture: Flower box / Trash can			
9	Discontinuous barriers: Bollards / Delimiter			
10	Continuous soft barriers: Vegetation			
11	Continuous barriers: Balustrade / Boundary barrier			
12	Continuous barriers: Pedestrian protection barrier	Segregated		
13	Carriageway divider			

Delimitation elements (example for dedicated lanes)

4 - Lane delimiter: Fixed plastic or rubber element, solidly anchored to the ground with the objective of separating two motor vehicle streams or to delimit a dedicated lane. It must be surmountable, which is only allowed in case of emergency.

Delimitation elements (example for segregated lanes)

7 - Traffic median: Longitudinal area of the road not suitable for vehicle flow, whose function is to separate vehicular flows. Due to its function, it is not accessible except in case of emergency.

Delimitation applicable to CM2 scenarios

Road class		С			D				E				F		
		Arterial road			Urban street				Collector street				Walkway		
Roa	ad user	Pedestrians	Cyclists	Motorcyclists	Motor vehicle drivers	Pedestrians	Cyclists	Motorcyclists	Motor vehicle drivers	Pedestrians	Cyclists	Motorcyclists	Motor vehicle drivers	Pedestrians	Cyclists
0	Shared														
1	Dedicated					٠	•			•	٠	٠	•	•	•
2	Segregated	•	•	•	•		•	•	•			٠	•		

CityNetMobil Presentation

To better explain the work done let's look at what others do: Nissan autonomous emergency steer

> A cool bit of technology But is it safer than manual driving? **Can this bocome the** standard requirement for **ARTSs?**

What would happen in this situation?

The only safe manouver is to slow down before!!!

CityMobil2 approach: ARTS safe integration (collector street)

3,50

0,50

≥ 3,00

0.50

What to detect when approaching intersections from the vehicles or communicating with the infrastructure

Integration scenarios (road section drawings)

- 12 ARTS segregated/dedicated scenarios
- 4 crossing scenarios
- 5 driveway scenarios

Two contiguous but independent infrastructures

- ARTS have dedicated or segregated lanes
 - Intersections with manually driven vehicles are possible (always with traffic lights and road-side sensors that control respect of lights)
 - Access to manually driven vehicles possible (if they respect specific regulations)
 - Pedestrians and cyclists access possible
- Manually driven vehicles lanes are not accessible to ARTS vehicles

Proposals for two separate regulations

- Regulates the technical procedure for certification of ARTS (infrastructure, vehicles and all subsystems)
- 2. Regulates the civil and criminal liability for ARTS' manufacturers and operators, and for manually driven vehicles using ARTS lanes

Principles of the Technical Directive

- Based on EN50126's vehicle and infrastructure certification through a risk assessment
- Takes advantage of "Type approval" on motor vehicles Directives
 - Based on modular Use cases: specific interaction situations between ARTS, infrastructure, road users and surrounding environment
 - A certified use case doesn't require another certification if the same conditions repeat

Step 1: Project approach

Step 2: Preliminary hazard risks

Step 3: FMECA and system design

Step 4: Verification of system safety/functionality

Step 5: Operational description Step 6: Verification of operational preparation

Step 7: Approval design/operational safety cases Step 8: Operational testing

CityMobil2