Human Factors Challenges for Driving Automation Systems

Steven E. Shladover, Sc.D.
California PATH Program
University of California, Berkeley
SIP - adus Workshop
Tokyo, October 28, 2015

SAE J3016 Definitions - Levels of Automation

ய ভ	Name	Narrative Definition	Execution of Steering/ Acceleration/ Deceleration	Monitoring of Driving Environment	$\begin{array}{\|c\|} \text { Fallback } \\ \text { Performance of } \\ \text { Dynamic } \\ \text { Driving Task } \\ \hline \end{array}$	System Capability (Driving Modes
Human driver monitors the driving environment						
0	No Automation	the full-time performance by the human driver of all aspects of the dynamic driving task, even when enhanced by warning or intervention systems	Human drive	man driver	Human driver	n/a
1	Driver Assistance	the driving mode-specific execution by a driver assistance system of either steering or acceleration/deceleration using information about the driving environment and with the expectation that the human driver perform all remaining aspects of the dynamic driving task	Human drive and system	uman drive	Human driver	Some driving modes
2	Partial Automation	the driving mode-specific execution by one or more driver assistance systems of both steering and acceleration/deceleration using information about the driving environment and with the expectation that the human driver perform all remaining aspects of the dynamic driving task	System	uman drive	Human driver	Some driving modes
Automated driving system ('system") monitors the driving environment						
3	Conditional Automation	the driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task with the expectation that the human driver will respond appropriately to a request to intervene	System	System	Human driver	Some driving modes
4	High Automation	the driving mode-specific performance by an automated driving system of all aspects of the dynamic driving task, even if a human driver does not respond appropriately to a request to intervene	System	System	System	Some driving modes
5	Full Automation	the full-time performance by an automated driving system of all aspects of the dynamic driving task under all roadway and environmental conditions that can be managed by a human driver	System	System	System	All driving modes

Example Systems at Each Automation Level

Level	Example Systems	Driver Roles
1	Adaptive Cruise Control OR Lane Keeping Assistance	Must drive other function and monitor driving environment
2	Adaptive Cruise Control AND Lane Keeping Assistance Traffic Jam Assist (Mercedes, Volvo, Infiniti)	Must monitor driving environment (system nags driver to try to ensure it)
3	Traffic Jam Pilot Automated parking with supervision	May read a book, text, or web surf, but be prepared to intervene when needed
$\mathbf{4}$	Highway driving pilot Closed campus driverless shuttle Driverless valet parking in garage	May sleep, and system can revert to minimum risk condition if needed
5	Automated taxi (even for children) Car-share repositioning system	No driver needed

Level 1 Driver Assistance

- Full attention needed to execute "other" driving task \rightarrow no loss of driver vigilance
- Warning systems (using same sensors as automation systems) augment driver vigilance
- Reduced effort on steering in tight curves frees up driver attention to monitor external hazards:

Level 2 Partial Automation

- Drivers could be misled to assume higher capability than system has
- Drivers will lose vigilance when system does steering and speed/spacing control
- Drivers will be tempted to abuse the system so they can do other things:

Level 3 Conditional Automation

- Serious doubts about feasibility of capturing driver's attention to provide fallback within a few seconds, considering:
- Inattention
- Distraction
- Sleep
- Can these driver states be avoided?
- Fallback will be needed under the most challenging emergency driving conditions
\rightarrow Doubts about feasibility (safety) of Level 3

Broader Human Factors Issues for Automation

- User acceptance based on perceived safety (especially after crashes are reported)
- Interactions with vulnerable road users (bikes and pedestrians), who depend on eye contact with drivers today
- Interactions with other drivers, especially for overly-timid AV driving styles
- Societal risk tolerance determining "how safe is safe enough?" to be different by country

Regulatory Needs

- California legislation specified that new rules apply to "technology that has the capability to drive a vehicle without the active physical control or monitoring by a human operator"
- What rules are needed to:
- Ensure users are informed/educated about capabilities and limitations of systems
- Require some minimum system safety level
- Reassure other road users that their safety has not been compromised by AVs
- Deter abuses of systems by drivers $\mathrm{P} / \mathrm{CNH}^{\prime \prime}$

Public Policy Choices

- How to balance protecting public safety with encouraging new technological innovations?
- Immature technology will not be safe at first
- How to gain societal consensus on acceptable safety level for automated driving systems?
- How to balance "new economy" jobs creating more advanced automation systems with driving jobs that could be lost eventually?
- How to assess mixed impacts on energy use and traffic, based on increased levels of travel but more efficient unit travel?

